

Project Management, Lifecycle, and Documentation

What is a project?

- A project is a complex, non-routine, one-time effort limited by time, budget, resources, and performance specifications designed to meet specific needs.
 - Examples include construction of a chemistry department building, holding a teacher development workshop, creating a new French dining experience
- Projects generally have a particular set of characteristics in common
 - A clearly stated objective
 - A specific life span with beginning and end
 - Multiple departments or people working together
 - Usually something that has never been done before
 - Must be done within specific time, cost, and performance requirements

Why manage a project?

- Accomplish objectives of project within constraints
- Balancing trade-offs between time, cost, and performance
 - These three constraints can be mutually exclusive
 - An effective balance is necessary for project success
- Anticipating, identifying, and handling the unexpected
 - Unexpected events will happen throughout a project (Murphy's Law)
 - Risk planning is an essential component to project management
- Taking into account unique project features
 - As project complexity increases, coordination and risk also increase
 - New technology development is usually associated with increased risk and complexity

Project Team Structure

- Dedicated project team structure
 - Create independent team composed of specialists to focus exclusively on project
- Project team management structure
 - Maximum cohesion and focus provides fast response
 - Resistance to "outsiders" and constrained staff expertise
 - Appropriate for complex or organizations with many projects
- You should establish a "Team Contract" to define your organization and interaction as a team

Stages of Team Development

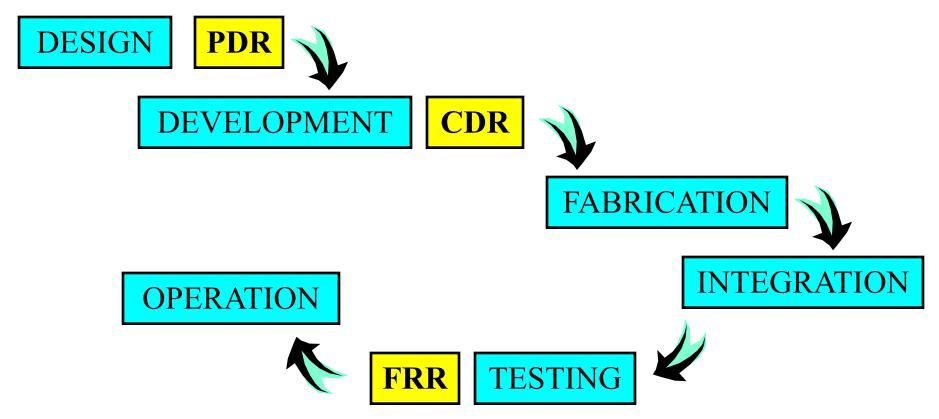
- Forming: Get acquainted stage when ground rules, roles, and interpersonal relations are established
 - Storming: Conflict stage when group control, decision making, group & project constraints are contested
 - Norming: Stage when close relationships develop, and the group demonstrates cohesiveness
 - Performing: Established expectations of how to work together and the group begins channeling energy into achieving project goals
 - Adjourning: Attention is focused on completing the project and could include conflicting emotions

SON

Building a Project Team

- Early on establish ground rules such as the following
 - How will the project be planned?
 - What will be the specific roles and responsibilities?
 - How will progress be assessed and tracked?
 - How will project changes be documented and instituted?
 - How, when and where will meetings be scheduled and run?
- Conduct project meetings that are regular, crisp, have a focused agenda and are time constrained
- Establish a team identity and create a shared vision
- Facilitate group decisions by identifying underlying problems, generating alternate solutions, fostering a consensus, and following-up on solution implementation
- Accepting, managing, and encouraging functional conflict

Project Team Pitfalls


- Project teams and managers need to be aware of various pitfalls that can lead to poor decisions.
- A team can become convinced that its decisions are infallible.
- Fail to examine alternate solutions and problems that might arise from the current plan.
- Stereotype outsiders negatively so that external concerns, issues or solutions remain unconsidered.
- Opposition by a member to a particular direction or solution might be repressed by the team.

The Project Phases

All projects complete roughly the same phases from inception to completion

The Design Phase

"Paper" study of all issues to establish major concepts and plans

- Little-to-no hardware testing or prototyping
- Define science goals and objectives
- System level design (ie Block Diagram subject of a later lecture)
 - System requirements derived from goals and objectives
 - Identify major subsystems and interfaces
- Concept hardware and software design
 - Derived from system requirements and constraints
 - Identify parts, costs, & availability
- Establish tasks, schedule, resource needs, and plans for the remaining phases of life-cycle
- Develop preliminary risk assessment & management plan
- Phase terminates with Preliminary Design Review (PDR)

Goals vs Objectives vs Requirements

- GOAL
 - The specific set of expectations for the payload/mission.
 - Defines what the payload should accomplish
 - Not measurable or quantifiable but you should be able to answer if the payload accomplished the goal
- OBJECTIVE
 - Specific target levels the system must achieve
 - Should be specific, measurable, and results-oriented
 - What outputs does the payload need to produce **but not** how it going to produce them
- REQUIREMENT
 - Multilevel with lower levels, adding specifics to and flowing from higher-level requirements (should be at most 4 levels deep)
 - The lowest level should give specific capabilities of components and possible orientation

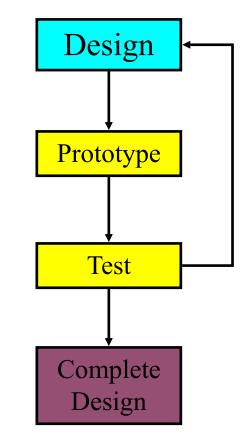
Example House

(adapted from Pugel, 2019 <u>https://smd-cms.nasa.gov/wp-</u> content/uploads/2023/04/2019_546_Pugel_Final_WhatAreRequirements.pdf)

- GOAL: Provide shelter and housing
- Objective: The project will build a house for a family
- Requirements: (Notice the numbering structure used)
 - Level 1: 1. The project shall build a house for two adults, 3 children, and two dogs
 - Level 2: 1.1 The house shall have one master bathroom
 - Level 3: 1.1.1 The master bathroom shall have a sink
 - Level 4: 1.1.1.1 The sink shall be deliver water at temperatures from 10-60C

Example NASA Mission

(adapted from Pugel, 2019 <u>https://smd-cms.nasa.gov/wp-</u> content/uploads/2023/04/2019_546_Pugel_Final_WhatAreRequirements.pdf)


- GOAL: The mission will improve the understanding of the formation of planets in the solar system
- Objective: The mission will generate a topographical map of the surface of Mars
- Requirements: (Notice the numbering structure used)
 - Level 1: 1. The mission will measure 90% of the surface of MARS every 300 m at 10 m precision
 - Level 2: 1.1 The mission will make radar interferometric measurements every 10 m
 - Level 3: 1.1.1 The mission shall have an antenna capable of receiving 77 GHz
 - Level 4: 1.1.1.1 The radar antenna shall receive 77 GHz with an antenna gain of 30 dB

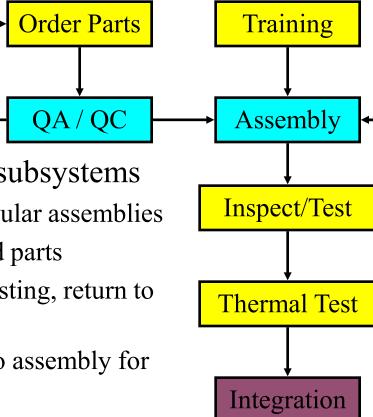
The Development Phase – 1 of 2

Detailed in-depth study when all design components are finalized

- Test concepts by prototyping
 - Not building flight hardware
 - Used to gain information necessary to refine or finalize a design
 - Applies to structure, electronics, sensors and software
- Finalize hardware & software design
 - Complete system design
 - Define interfaces and develop appropriate Interface Control Documents (ICD)
 - Complete detailed design

The Development Phase – 2 of 2

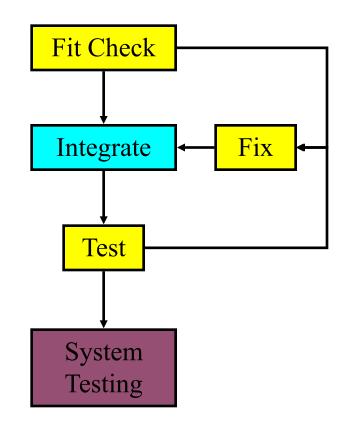
- Purchase long lead items (identified at PDR)
- Finalize plans for pre-flight phases
 - Fabrication, integration, calibration, and testing
 - Tasks, schedule, procedures, resource needs, costs
- Update risk assessment & management plan
 - Preliminary plan should already be in use for tracking and mitigating risks during development
- Develop preliminary mission operations & data analysis plan
- Phase terminates with Critical Design Review (CDR)



The Fabrication Phase

Implement construction of flight components

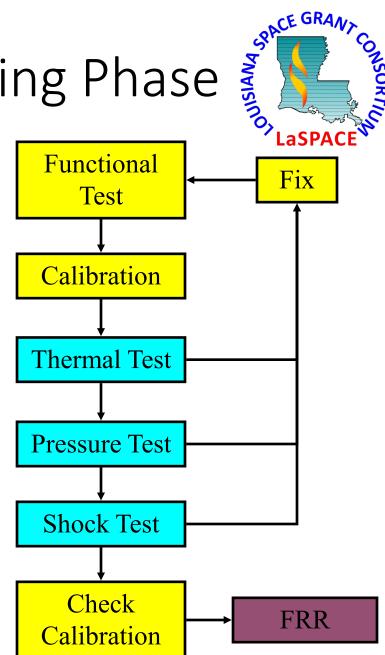
- Parts procurement
 - Test that parts satisfy flight requirements before assembly
- Assemble hardware & software subsystems
 - Training may be required for particular assemblies
 - Fabricate component with qualified parts
 - If part fails initial inspection and testing, return to assembly for rework / fixing
 - If part fails thermal testing return to assembly for rework / fixing
- Once complete move to integration



The Integration Phase

Subassemblies are put together to make the final package

- Make sure all parts fit together, if not then rework
- Make sure power system is delivering proper voltage and current
- Connect electronics and sensors
- Install software and run
- Fix issues before proceeding to system testing


SON

The System Testing Phase

Payload flight certification

- Integrated payload must first be fully functional
- Calibration values are determined
 - Sensors, ADC gain, timing
- Payload must function correctly during thermal, pressure & shock testing
 - If not, fix and begin again
 - If OK, then validate calibrations
- Test and test data must be documented
- Proceed to Flight Readiness Review

Mission Operations & Data Analysis (MO&DA)

Operate payload during flight & obtain science results

- Mission Operations plan includes the following
 - Sequence of operations to prepare payload for vehicle integration
 - Sequence of operations to prepare payload for launch
 - Flight profile requirements
 - Operations, commanding, contingencies during flight
 - Recovery handling and operations
- Data Analysis plan describes what happens to the flight data
 - Flight data handling, processing and analysis sequence
 - Specify data required from vehicle

SON

ALYST E NCES SINOT SINED

The Need for Communication

- Communication and documentation is key for a successful project
 - "If it is not written down, it did not happen!" (ancient wise saying)
 - "If you wrote it down, you agreed to do it!" (not as ancient wise saying)
- Communication assures coordination of effort across stakeholders
 - Agreement on how to proceed
 - Tracking of progress
 - Assure functioning interface between units
- Written documentation provides the "glue" that stabilizes components and unifies the project
 - Helps assure "end-to-end" thinking
 - Show agreement on roles, tasks, schedule
 - Provides proof of performance
- Reports & presentations set precedent for acknowledgement of effort and / or discoveries

The Project Reviews

- There are at least three major reviews during a project
 - Preliminary Design, Critical Design, Flight Readiness
 - Also including a Pre-PDR and Pre-CDR to divide the reviews into more manageable sections
- Provides a check on project progress for all stakeholders
- PDR, CDR, and FRR are major project milestones
 - Pre-PDR by end-January
 - PDR by mid-February
 - Pre-CDR by first part of March
 - CDR by mid- to late- March
 - FRR document by May & defense prior to launch
 - Imposed duration on schedule is a risk to be managed
- The team must prepare written documents for each review
- Oral presentations will be given for PDR, CDR and FRR
- Each review has a somewhat different objective and emphasis

Preliminary Design Review (PDR)

- The primary objective for the PDR is to review results from your design phase
- At the end of the PDR you should have been able to show that you have "thought the problem through"
- There will be two parts to the PDR
- The Pre-PDR will focus on your mission goal, science background, objectives, and requirements.
 - What do you want the payload to be able to do
- During the PDR you will build on the Pre-PDR
 - Resolve issues identified in the Pre-PDR
 - Add system design, concept instrument hardware & software design, risk analysis
 - A system-level design of what subsystems you need and what they need to do

PDR Topics

- The PDR should focus on the following topics:
 - Goals and objectives
 Pre-PDR

 - Preliminary System design
 - Concept hardware & software design
 - Tasks, schedule, resource needs, long-lead items Pre-PDR
 - Preliminary risk assessment & management plan
- Use the document template to guide your PDR write-up
 - Similar document for CDR and FRR
- LSU PDR Presentation will be Feb. 18

Critical Design Review (CDR)

- The primary objective of the CDR is to review the results from your development phase
- Determines whether you are ready to begin building your payload
- The Pre-CDR will focus on resolving PDR issues, prototype results, "proven" design, final system, and interfaces.
 - Build and test prototypes to go from block diagrams
- During the CDR you will build on the Pre-CDR
 - Resolve issues identified in the Pre-CDR
- LSU CDR Presentations April 15, 2025

CDR Topics

- CDR should follow the same format as the PDR
 - Modify document template for CDR
 - Same oral presentation format
- CDR should emphasize the following topics:

 - Finalize tasks, schedule, procedures and costs
 - Updated risk assessment & management plan
 - Preliminary Mission Operation and Data Analysis plan (what are you going to do on flight day and after your receive your payload back)

Flight Readiness Review (FRR)

- SIND SINEON Determine that all issues from CDR have been resolved
 - Document Experiment Readiness
 - As-built configuration
 - Environmental testing results
 - Calibrations performed
 - Provide quantitative evidence that the payload:
 - Meets requirements
 - Is safe

ALYST CT

- Will perform properly
- Determine any impact on other payloads or the vehicle
- Describe procedures for checkout, integration with the vehicle, and mission operations
- There should be no outstanding issues that must be addressed before flight

FRR Topics

- FRR document follows same format at CDR
 - Documentation of as-built configuration
 - Prove that payload is safe, will perform properly and satisfies flight constraints
 - Written FRR document sent to LaACES Management two weeks before flight
- Oral FRR presentation during the launch trip
- Successful (i.e. "passed") PDR, CDR, FRR documents and FRR oral presentation will determine whether you are allowed to attach your payload to the flight vehicle!

CATALYST ELOTARIA

Post-Flight Science Report

- During the launch trip, you will be required to present a report on your preliminary science results
 - PowerPoint presentation including science background, a brief description of the instrument, calibrations, analyzed data, science results, and error analysis
- You will have a full day following the flight to analyze your data and prepare your report
- You will be provided with a time-to-altitude converter program for your flight
- Recommend the following prior to the launch trip
 - Have your presentation done except for the science results
 - Have your calibrations complete and ready to apply
 - Have your ground data handling and analysis software complete, tested, and ready to go