
Introduction to Programming

LSU rev20240724 L06.01 1

Computer programming is the
process of writing code

Code is executable program
instructions that are interpreted by

computers to perform specific actions

2LSU rev20240724 L06.01

The World of Computer Logic
Most computers operate on binary logic – that is, they utilize
bits to perform complex operations

A bit is a basic unit of information that can only be one of two
values – 0 or 1

Multiple bits can be interpreted together to form larger units of
information; for example, 8 bits form a byte

These series of bits can be used to represent numbers

Example of a byte: 0 0 1 0 1 1 0 1

3LSU rev20240724 L06.01

Number Representations

A number representation is a writing notation for numbers.
In everyday, we typically use the decimal number
representation to count. We count 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
We can show larger numbers by adding these digits
together; for example, combining 4 and 2 produces 42

However, computers do not use the decimal number
system. They operate on binary logic – they only use 0’s
and 1’s. This is known as the binary number system. It
follows the same logic as the decimal number system. As
such, it is important to understand how numbers can be
represented using binary

4LSU rev20240724 L06.01

Binary Number System

Binary Decimal Number

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Table 1: Binary number system

5

The binary number system is a base 2 number representation. Each
digit in a binary number is a bit

Since all digits are either a “0” or “1”, it can
be difficult to interpret what a number is at
first glance. It can be useful to compare the
number to the decimal number we are more
familiar with

Each digit in a binary number can be read as
2n, where n represents the total number of
digits in the binary number

The rightmost digit is known as the least
significant bit (LSB) and the leftmost digit is
known as the most significant bit (MSB)

LSU rev20240724 L06.01

Conversion: Binary to Decimal
▪ To convert from binary to decimal,

use a base of 2 and powers beginning
with 0 at the LSB, counting upwards to
the MSB

▪ This technique is the same in decimal
systems; it is similar to how “10” is 10
times larger than 1

▪ For example, “2” in decimal can be
represented in binary as “0010”

Example: Convert (0010)2 to decimal = 23(0) + 22(0) + 21(1) + 20(0)
 = (8)(0) + (4)(0) + (2)(1) + (2)(0)
 = (2)10

Figure 1: Convert binary to decimal

6LSU rev20240724 L06.01

Conversion: Decimal to Binary
▪ To convert from decimal to binary,

divide by 2. If dividing by an even
number, carry a 0. If dividing by an
odd number, carry a 1

▪ Divide the remaining whole
number by 2 and follow the same
carry rules; repeat until the
remaining whole number is 0

▪ Build the binary sequence from
bottom to top

Example: Convert (294)10 to binary = (100100110)2

Divide Carry

294 ÷ 2 = 147 0

147 ÷ 2 = 73.5 1

73 ÷ 2 = 36.5 1

36 ÷ 2 = 18 0

18 ÷ 2 = 9 0

9 ÷ 2 = 4.5 1

4 ÷ 2 = 2 0

2 ÷ 2 = 1 0

1 ÷ 2 = 0.5 1

Table 2: Convert decimal to
binary

7LSU rev20240724 L06.01

Hexadecimal System

▪ Sometimes, it is useful to use a
larger number representation

▪ Hexadecimal (a base 16
representation) is often used
because it can represent a byte
with a single character, and can
be much quicker to read and
understand

▪ This is a base 16, alphanumeric
system which means that each
digit can have one of sixteen
different values (0, 1, 2, 3, 4, 5,
6, 7, 8, 9, A, B, C, D, E, F)

Hexadecimal Binary Representation

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

Table 3: Hexadecimal number system

8LSU rev20240724 L06.01

Common Programming Languages
There are many different languages that
code can be written in. Each programming
language varies in syntax (structure and
format) and semantics (meaning)

Common programming languages include:
▪ C, C#, C++
▪ Java, JavaScript
▪ Python

Arduino uses a variation of C++

We will focus on learning Arduino C, the programming language for
Arduino hardware

Figure 2: A example of Arduino Code

9LSU rev20240724 L06.01

Variables

Variables are data values typically saved in memory
that can be changed based on code execution

Variables consist of three primary parts – the data
type, the variable name, and the variable value

Data Type

int Var = 42;

Variable Name

Variable Value

10LSU rev20240724 L06.01

Data Types

There are many different types of variables that store different kinds of data.
The type of data stored within a variable depends on the variables data type

Data types are typically declared before the name of the variable. They define
how you intend to use data and let the computer know how much room to
set aside in memory. The amount of memory set aside is measured in bytes

Table 4: Data type specifications

Data Type Keyword Bytes Range of Values Numeric (N) or Alphanumeric (A)

Integer int 2 -32768 to 32767 N

Character char 1 0 to 255 N

String String varies varies A

Boolean bool 1 bit 0 or 1 N

Floating float 4 -3.4 x 1038 to 3.4 x 1038 N

Array name[] varies varies A or N (depends on array type)

11LSU rev20240724 L06.01

2’s Complement

2’s complement is how negative numbers are stored. The MSB
gives the sign of the number. 0 means the number is positive; 1
means the number is negative. To convert from a positive
number to a negative number, invert all bits and then add 1

28 = 0001 1100

Invert -> 1110 0011

Add 1 -> 1110 0100

-28 = 1110 0100

12LSU rev20240724 L06.01

Operators

Operators are one of the most common ways of
manipulating the value of a variable. They represent a
functional operation such as adding or subtracting

Common types of operators include:

• Arithmetic

• Logical

• Conditional

• Bitwise

• Comparison

13LSU rev20240724 L06.01

Arithmetic Operators

▪ Arithmetic operators are mathematical functions that
take two operands, perform a calculation, and provide a
result

Table 5: Arithmetic operators

Operator Description Example

+ Adds two operands A + B = C

- Subtracts second operand from first A – B = C

* Multiplies operands A * B = C

/ Divides dividend by divisor B / A = C

% Modulus operator: Remainder of quotient B % C = D

++ Increments integer by 1 ++A = A + 1

-- Decrements integer by 1 --A = A - 1

14LSU rev20240724 L06.01

Logical Operators

▪ Logical operators use the laws of Boolean logic to
compare two conditions and provide one result if true
and another if false

Table 6: Logical operators

Operator Description Example

&&

AND – If both operands are nonzero,

the condition is true; otherwise, it is

false

If A = 1 and B = 0,

then A && B = false

||
OR – If either operand is nonzero, the

condition is true; otherwise, it is false

If A = 1 and B = 0,

then A || B = true

!
NOT – If a condition is true, then

!condition is false

If A || B = true, then

!(A || B) = false

15LSU rev20240724 L06.01

Conditional Operators

▪ A conditional operator will return one value if a
condition is true and another if a condition is false

▪ Most operators are conditional by nature because they
compare entities and then proceed one way if a
particular condition is met and another way if it is not

Example:

16LSU rev20240724 L06.01

if (expression1) a = a1; // Test this first
else if (expression2) a = a2; // If above was false, test this
else a = a3; // If above was also false, do this

Bitwise Operators

▪ Bitwise operators are similar to logical operators, except
they compare individual bits instead of the entire
operand

Table 7: Bitwise operators

Operator Description Example

&
Bitwise AND – If both bits are nonzero, the condition

is true; otherwise, it is false

If a = 1 and b = 0,

then a & b = false

|
Bitwise OR – If either bit is nonzero, the condition is

true; otherwise, it is false

If a = 1 and b = 0,

then a | b = true

^
Bitwise XOR – If both bits are different, the

condition is true; otherwise, false

If a = 1 and b = 1,

then a ^ b = false

~
Bitwise NOT – Inverts all bits of a number If D = 0110, then ~D

= 1001

17LSU rev20240724 L06.01

Comparison Operators

▪ Comparison operators are used to compare two
operands

▪ These are typically found nested within a function

Table 8: Comparison operators

Operator Description Example

== Equal to x == y (x is equal to y)

!= Not equal to x != y (x is not equal to y)

< Less than x < y (x is less than y)

> Greater than x > y (x is greater than y)

<= Less than or equal to x <= y (x is less than or equal to y)

>=
Greater than or equal to x > y (x is greater than or equal to y)

18LSU rev20240724 L06.01

Functions

▪ A function is a code segment in a program that contains
instructions the computer will use to perform a task

▪ To define a function:

o Specify a data type for the return

o Provide a unique name followed by a set of parenthesis

o After the parenthesis, put the instructions that need to be
executed inside a set of brackets

void setup () {
 <insert instructions> }

Figure 5: Structure of a void function

19LSU rev20240724 L06.01

Void

▪ Void is a special data type used for declaring a function
that is not expected to return any information

▪ Arduino uses two void functions to get you started; the
main setup runs one time when the program begins,
followed by a loop that runs continuously thereafter

Figure 6: Image of the Arduino start screen
20LSU rev20240724 L06.01

Conditional Statements: If/Else
▪ An if statement proceeds one way if a condition is met

and another way if it is not met

void setup() {
 Serial.begin(9600); }

void loop() {

 int A = 15;
 int B = 10;

 if (A >= B) {
 Serial.println (A – B);
 }
 else if ((A < B) && (B != 0)) {
 Serial.println (B + A);
 }

Figure 7: In this example, if A is greater than
or equal to B, then A – B will print.

Otherwise, if B is not zero then B + A will print

void setup() {
 Serial.begin(9600); }

void loop() {

 int A = 5;
 int B = 20;

 if (B >= A) {
 Serial.println (B - A);
 }
 else if ((A < B) && (B != 0)) {
 Serial.println (B + A);
 }

Figure 8: In this example, if B is greater than
or equal to A, then B – A will print.

Otherwise, if B is not zero then B + A will print

21LSU rev20240724 L06.01

Loops

▪ A loop is useful when repetitive operations are being
performed because the instructions will repeat until a
particular condition is met

∞ Some loop commands pretest, which means they test for
a condition at the beginning of the loop

∞ Other loop commands posttest, which means they test for
a condition at the end of the loop

22LSU rev20240724 L06.01

For Loops

▪ A for loop executes repeatedly and increments a
counter variable until the conditional statement is no
longer true (pretest condition)

void setup() {
 Serial.begin(9600);
}

void loop() {

 for (int i = 0; i <= 15; i++) {
 Serial.println(i);
 }
}
 Output → 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 9: A for loop that counts from 0 to 15. The variable i
starts at 0 and increments every loop until the condition

stated in the loop is no longer valid.

Counter
Initialization

for (int i = 0; i <= 15; i++)

Conditional
Statement

Increment

23LSU rev20240724 L06.01

While Loops
▪ A while loop will only run when the conditional statement is

true (pretest condition)

int carrier = 0;

void setup() {
 Serial.begin(9600);
}

void loop() {

 while (carrier < 20) {
 Serial.println(carrier++);
}

Figure 10: A while loop that counts from
0 to 19

Conditional Statement

while (carrier < 0) { Serial.print (carrier++) }

Loop Execution

24LSU rev20240724 L06.01

Do/While Loops

▪ A do/while loop only checks for a condition after some
other action has occurred (posttest condition)

int x = 0;
void setup() Serial.begin(9600);
void loop() {

 do {
 Serial.print(“Waiting…”);
 Serial.println(x++);
 } while (x < 10) ;

 Serial.println(“done”);
 while(1) {};
}

Figure 11: A do/while loop that counts from 0 to 9

Conditional Statement

do { Serial.print (carrier) } while (x < 10)

Loop Execution

25LSU rev20240724 L06.01

Leaving Comments

▪ If you can fit your comment on one line, then simply type two
backslashes followed by your text

▪ If you need more room, then use a backslash and asterisk
combination to comment over multiple lines

▪ You can highlight a block of information and press ctrl +
backslash to comment the entire block

// Leave a one-line comment like this

/* Use as many lines as needed in order to provide
enough information for someone else to understand
your code */

26LSU rev20240724 L06.01

Good Comments

27LSU rev20240724 L06.01

Figure 12: This an example of good commenting. Notice the comments explaining each
step and the use of white space to help the user understand the code.

Bad Comments

28LSU rev20240724 L06.01

Figure 13: This an example of bad
commenting. The lack of
comments make the code
difficult for a user to follow and
understand the purpose of this
function.

Version Control

• While developing software, it is important to
track the changes made within your code. This is
accomplished by version control.

• Version Control is the practice of managing and
recording changes to software or other
frequently changed documents

• Without version control, changes are more
frequently lost, miscommunicated, or duplicated.

• Version control helps facilitate effective
communication in development teams.

29LSU rev20240724 L06.01

Version Control Systems

In large software projects,
version control is often
handled by a version control
system developed by a third
party. A version control
system (VCS) is a software
program that creates and
tracks multiple versions of a
codebase on a server.

Some examples of VCS
software include GitHub,
Subversion, and BitKeeper

LSU rev20240724 L06.01 30

Figure 14: Example of a GitHub repository for a large
software program

Working Copies and Branches

In development, it is often useful for multiple programmers to
edit software at the same time.

The initial copy of the software that the programmers begin
with is called the working copy or baseline. The edited
software that each programmer creates is known as a branch.
Multiple branches may exist at the same time. A branch may
become the working copy when the team agrees to shift to
the new branch for further development work.

When a programmer is finished with his or her changes to the
branch, they may compile a change list which summarizes all
changes made to the software.

LSU rev20240724 L06.01 31

File Tags

In version control, a file tag is a series
of numbers or letters that designate
the version of an existing document or
software. File tags often include a
version number that in incremented
with any changes or the date the file
was modified.

The system for updating the file tag is
defined during project creation and is
followed throughout the lifetime of
the project.

LSU rev20240724 L06.01 32

Figure 15: Example of a file tag system
for iterations of a document

Function Version History

• It is useful to track changes of a function. This can be
done by implementing a change log inside the code

LSU rev20240724 L06.01 33

Figure 16: Example of a
change log for a function.
After the description of a
function, include version
history. This will tell a user
when any changes were
made and what those
changes were.

Sketch Version History

• Like functions, sketch changes should be documented.
This should be done in the beginning of the sketch

LSU rev20240724 L06.01 34

Figure 17: Example of
version history for a sketch.
Every time the sketch is
worked on, a new section is
added describing the
changes that were made.

Troubleshooting Your Code

▪ Check syntax

▪ Check punctuation: semicolons, brackets and
parenthesis must be placed correctly

▪ Ensure correct placement of conditional
statements and loops

▪ Use correct data types

▪ Make sure global and local variables are
accessible to the appropriate functions

35LSU rev20240724 L06.01

Good Bookkeeping

▪ There is typically more than one way of writing a
program to accomplish a particular task; as such,
programmers tend to have their own styles

▪ It is good practice to write your code in a manner that is
easy for you to navigate through and clear enough for
others to understand

▪ Practice taking advantage of whitespace, utilize control
characters, identify variables and functions using
descriptive names, and always comment your code

▪ Work to establish good habits while you are learning

36LSU rev20240724 L06.01

References

▪ For a list of Arduino keywords, visit
https://www.arduino.cc/reference/en/

37LSU rev20240724 L06.01

https://www.arduino.cc/reference/en/

	Slide 1: Introduction to Programming
	Slide 2
	Slide 3: The World of Computer Logic
	Slide 4: Number Representations
	Slide 5: Binary Number System
	Slide 6: Conversion: Binary to Decimal
	Slide 7: Conversion: Decimal to Binary
	Slide 8: Hexadecimal System
	Slide 9: Common Programming Languages
	Slide 10: Variables
	Slide 11: Data Types
	Slide 12: 2’s Complement
	Slide 13: Operators
	Slide 14: Arithmetic Operators
	Slide 15: Logical Operators
	Slide 16: Conditional Operators
	Slide 17: Bitwise Operators
	Slide 18: Comparison Operators
	Slide 19: Functions
	Slide 20: Void
	Slide 21: Conditional Statements: If/Else
	Slide 22: Loops
	Slide 23: For Loops
	Slide 24: While Loops
	Slide 25: Do/While Loops
	Slide 26: Leaving Comments
	Slide 27: Good Comments
	Slide 28: Bad Comments
	Slide 29: Version Control
	Slide 30: Version Control Systems
	Slide 31: Working Copies and Branches
	Slide 32: File Tags
	Slide 33: Function Version History
	Slide 34: Sketch Version History
	Slide 35: Troubleshooting Your Code
	Slide 36: Good Bookkeeping
	Slide 37: References

