LaACES
Student
“, 7 Ballooning
Course

01 s
ZLaSPACY.

Introduction to Programming

LSU rev20240724 L06.01

LYST E*
o %?; LaACES
g % Student

[\
Fs g‘ .
f@ Ballooning
.‘“«-S N4

/ SPACK. ComTge

Computer programming is the
process of writing code

Code is executable program
instructions that are interpreted by
computers to perform specific actions

LYST £y

A9 \N. LaACES

% T CES

Student
‘,}3 Ballooning
RS- S
N Course

Noq sy
LaSPACY.

The World of Computer Logic

Most computers operate on binary logic — that is, they utilize
bits to perform complex operations

A bit is a basic unit of information that can only be one of two
values—0or1

Multiple bits can be interpreted together to form larger units of
information; for example, 8 bits form a byte

These series of bits can be used to represent numbers

LaACES
5 Student
* Ballooning

S v Number Representations

A number representation is a writing notation for numbers.
In everyday, we typically use the decimal number
representation to count. We countO, 1, 2,3,4,5,6, 7,8, 9.
We can show larger numbers by adding these digits
together; for example, combining 4 and 2 produces 42

However, computers do not use the decimal number
system. They operate on binary logic — they only use 0’s
and 1’s. This is known as the binary number system. It
follows the same logic as the decimal number system. As
such, it is important to understand how numbers can be
represented using binary

LaACES
5 Student
’ Ballooning

S taee® Binary Number System

The binary number system is a base 2 number representation. Each
digit in a binary number is a bit

Since all digits are either a “0” or “1”, it can

be difficult to interpret what a number is at

000 0 first glance. It can be useful to compare the

001 1 number to the decimal number we are more
familiar with

010 2

011 3 Each digit in a binary number can be read as

100 4 2", where n represents the total number of

s c digits in the binary number

110 6 The rightmost digit is known as the least

111 7 significant bit (LSB) and the leftmost digit is

known as the most significant bit (MSB)

Table 1: Binary number system

LSU rev20240724 L06.01

LaACES

% Student
““a . Ballooning
£aSPACY. éourse . B . D . |

= To convert from binary to decimal, MSB LSB
use a base of 2 and powers beginning
with O at the LSB, counting upwards to 2 22 21 20
the MSB VAV TN

= This technique is the same in decimal 2%0) - 2%0) - 211)2%0)
systems; it is similar to how “10” is 10 \
times larger than 1 ®0 @0 @1 (@0

= For example, “2” in decimal can be 0+0+2+0=2
represented in binary as “0010” Figure L: Convert binary to decimal

Example: Convert (0010), to decimal = 23(0) + 2%(0) + 21(1) + 2°(0)
= (8)(0) + (4)(0) + (2)(1) + (2)(0)
= (2)10

LSU rev20240724 LO6.01 6

LaACES
Student
\ 'FZ}J; Ballooning
Sy e Course

~ Conversion: Decimal to Binary
* To convert from decimal to binary,

divide by 2. If dividing by an even 294 +2=147 0
number, carry a 0. If dividingbyan |['#/72=73> 1
odd number, carry a 1 [S=2- sl 1
36+2=18 0
= Divide the remaining whole 18+2=9 0
number by 2 and follow the same 9=2=15 1
carry rules; repeat until the 4+2=2 0
remaining whole numberis 0 2+2=1 0
1+2=0.5 1

= Build the binary sequence from Table2sConvert decimal o

bottom to top

Example: Convert (294),, to binary = (100100110), ‘

LSU rev20240724 L06.01 7

- <&S3E
% LY O
4’5'/‘9 PP
//70_' SL"‘%

LaSPACY.

LaACES
Student
Ballooning

cwe Hexadecimal System

Sometimes, it is useful to use a
larger number representation

Hexadecimal (a base 16
representation) is often used
because it can represent a byte
with a single character, and can
be much quicker to read and
understand

This is a base 16, alphanumeric
system which means that each
digit can have one of sixteen
different values (0, 1, 2, 3, 4, 5,
6,7,8,9,A,8B,CD,E,F)

LSU rev20240724 L06.01

Hexadecimal
0

m U O @ > O 00 N O Ll D WN R

-n

Binar

Representation
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Table 3: Hexadecimal number system

<ALYST
49). LaACES
N /M. Student
““a 0> Ballooning

sl o I
A'/s,n L 9“30(\ C
07 St ourse
ZLaSPACY.

Common Programming Languages

There are many different languages that

finclude <SPI.h>

code can be written in. Each programming [<
language varies in syntax (structure and onat ine chipselect - 4
format) and semantics (meaning) o s

while (!Serial) |

Common programming languages include: PP
Serial.println("Card failed, or not present™);
] C’ C#’ C++ }x-.-a-.:;e (1:
. Serial.println({"card initialized.™);
= Java, JavaScript)
| Python Figure 2: A example of Arduino Code

Arduino uses a variation of C++

We will focus on learning Arduino C, the programming language for
Arduino hardware

LSU rev20240724 L06.01

LaACES
% Student
* Ballooning

2 Vs j@ V .
b, 5P (\\,
ariables
£28PACK. Course

Variables are data values typically saved in memory
that can be changed based on code execution

Variables consist of three primary parts — the data
type, the variable name, and the variable value

int Var=42;

-

Data Type

Variable Name

LSU rev20240724 L06.01 10

LaACES
Student
Ballooning

Data Types

There are many different types of variables that store different kinds of data.
The type of data stored within a variable depends on the variables data type

Data types are typically declared before the name of the variable. They define
how you intend to use data and let the computer know how much room to
set aside in memory. The amount of memory set aside is measured in bytes

Data Type Keyword Bytes Range of Values Numeric (N) or Alphanumeric (A)
Integer int 2 -32768 to 32767 N
Character char 1 0to 255 N
String String varies varies A
Boolean bool 1 bit Oorl N
Floating float 4 -3.4x 1038 t03.4x 1038 N
Array name(] varies varies A or N (depends on array type)

Table 4: Data type specifications

LSU rev20240724 LO6.01 11

LaACES
Student

%‘@%w f Ballooning)
0 2’s Complement

2’s complement is how negative numbers are stored. The MSB
gives the sign of the number. 0 means the number is positive; 1
means the number is negative. To convert from a positive
number to a negative number, invert all bits and then add 1

28 = 0001 1100

Invert -> 1110 0011
Add1-> 11100100

-28 =1110 0100

LaACES
5 Student
* Ballooning

0 Operators
LaSPACL.

Operators are one of the most common ways of
manipulating the value of a variable. They represent a
functional operation such as adding or subtracting

Common types of operators include:
e Arithmetic

* Logical

* Conditional

* Bitwise

* Comparison

LaACES
Student
’ Ballooning

S e Arithmetic Operators

" Arithmetic operators are mathematical functions that
take two operands, perform a calculation, and provide a

result
Operator Description Example
+ Adds two operands A+B=C
- Subtracts second operand from first A-B=C
* Multiplies operands A*B=C
/ Divides dividend by divisor B/A=C
% Modulus operator: Remainder of quotient B%C=D
++ Increments integer by 1 ++tA=A+1
-- Decrements integer by 1 -A=A-1

Table 5: Arithmetic operators

LSU rev20240724 LO6.01 14

LaACES
Student
* Ballooning

2 e Logical Operators

" Logical operators use the laws of Boolean logic to

compare two conditions and provide one result if true
and another if false

Operator Description Example
AND — If both operands are nonzero, If A=1and B=0,
& the condition is true; otherwise, it is then A && B = false
false
OR — If either operand is nonzero, the If A=1and B=0,
| condition is true; otherwise, it is false then A || B =true
NOT — If a condition is true, then If A || B=true, then
| e
' Icondition is false I(A || B) =false

Table 6: Logical operators

LSU rev20240724 LO6.01 15

LaACES
Student

- emre Conditional Operators

LaSPACY.

= A conditional operator will return one value if a
condition is true and another if a condition is false

" Most operators are conditional by nature because they
compare entities and then proceed one way if a
particular condition is met and another way if it is not

E e if (expressionl) a = al; // Test this first
Xample: else if (expression2) a =a2; //If above was false, test this
else a = a3; // If above was also false, do this

LSU rev20240724 L06.01 16

LaACES
Student
* Ballooning

S Tame Bitwise Operators

= Bitwise operators are similar to logical operators, except

they compare individual bits instead of the entire

operand
Operator Description Example
5 Bitwise AND — If both bits are nonzero, the condition Ifa=1and b =0,
is true; otherwise, it is false then a & b = false

Bitwise OR — If either bit is nonzero, the conditionis Ifa=1andb =0,

true; otherwise, it is false thena | b =true
A Bitwise XOR — If both bits are different, the Ifa=1andb=1,
condition is true; otherwise, false then a A b = false
N Bitwise NOT — Inverts all bits of a number If D=0110, then ~D
= 1001

Table 7: Bitwise operators

LSU rev20240724 LO6.01

17

LaACES
Student
* Ballooning

s Comparison Operators

ZLaSPACR.

= Comparison operators are used to compare two
operands

= These are typically found nested within a function

Operator Description Example
== Equal to X ==y (x is equal toy)
I= Not equal to x 1=y (x is not equal to y)
< Less than X<y (xisless thany)
> Greater than X >y (x is greater thany)
<= Less than or equal to x <=y (x is less than or equal to y)
o Greater than or equalto x>y (xis greater than or equal to y)

Table 8: Comparison operators

LSU rev20240724 LO6.01 18

LaACES
5 Student
* Ballooning

.A :c’.§§ -3 °
S5 S Functions
/2SPACY. DHEse

= A function is a code segment in a program that contains
instructions the computer will use to perform a task

"= To define a function:
o Specify a data type for the return
o Provide a unique name followed by a set of parenthesis

o After the parenthesis, put the instructions that need to be
executed inside a set of brackets

void setup () {
<insert instructions> }

Figure 5: Structure of a void function

LSU rev20240724 L06.01 19

LaACES
Student

T\ .
s P Ballooning Void
LaSPACK. S

= Void is a special data type used for declaring a function
that is not expected to return any information

= Arduino uses two void functions to get you started; the
main setup runs one time when the program begins,
followed by a loop that runs continuously thereafter

void setup() {
// put your setup code here, to run once:

}

void loop() {
// put your main code here, to run repeatedly:

}

Figure 6: Image of the Arduino start screen
LSU rev20240724 L06.01 20

LaACES
Student

’ Ballooning

Course

Conditional Statements: If/Else

= An if statement proceeds one way if a condition is met
and another way if it is not met

void setup() {
Serial.begin(9600); }

void loop() {

int A=15;

int B =10;

if (A >=B) {
Serial.printin (A — B);

}

else if ((A<B) && (B !=
Serial.printin (B + A);

}

0)) {

void setup() {
Serial.begin(9600); }

void loop() {

intA=>5;

int B = 20;

if (B >= A) {
Serial.printin (B - A);

}

elseif ((A<B)&&(B!=0)) {
Serial.printin (B + A);

}

Figure 7: In this example, if A is greater than

or equal to B, then A — B will print.

Otherwise, if B is not zero then B + A will print

LSU rev20240724

Figure 8: In this example, if B is greater than
or equal to A, then B — A will print.
Otherwise, if B is not zero then B + A will print

LYST £y

A9 \N. LaACES
Py LN Student
o “°'F‘§tﬁf Ballooning

w2 Cours Loops
£LaSPACK.

= Aloop is useful when repetitive operations are being
performed because the instructions will repeat until a
particular condition is met

oo Some loop commands pretest, which means they test for
a condition at the beginning of the loop

oo QOther loop commands posttest, which means they test for
a condition at the end of the loop

LaACES
Student
* Ballooning

[:7;:\;&& Course F or LO O p S

= A for loop executes repeatedly and increments a
counter variable until the conditional statement is no
longer true (pretest condition)

void setup() {
Serial.begin(9600);
[} [L }
for (inti=0;i<=15;)
A void loop() {
f for (inti=0;i<=15;i++) {
Serial.printin(i);
Counter } g "
Initialization }
Conditional Output>012345678910111213 1415

Statement , —
Figure 9: A for loop that counts from 0 to 15. The variable i

starts at 0 and increments every loop until the condition
stated in the loop is no longer valid.

LSU rev20240724 LO6.01 23

LaACES
Student
’ Ballooning

b While Loops

= A while loop will only run when the conditional statement is

true (pretest condition)
while (carrier < 0) { Serial.print (carrier++) }

1

Conditional Statement

int carrier = 0;

void setup() {
Serial.begin(9600);
}

void loop() {
while (carrier < 20) {
Serial.printin(carrier++);

Figure 10: A while loop that counts from
Oto 19
LSU rev20240724 L06.01

24

LaACES
Student

S "en® Do/While Loops

= A do/while loop only checks for a condition after some

other action has occurred (posttest condition)
do { Serial.print (carrier) } while (x < 10)

Conditional Statement

intx=0;
void setup() Serial.begin(9600);
void loop() {

do {
Serial.print(“Waiting...”);
Serial.printin(x++);

} while (x < 10) ;

Serial.printin(“done”);

while(1) {};
}

Figure 11: A do/while loop that counts from 0 to 9

LSU rev20240724 LO6.01 25

LaACES
Student

%A»sﬂég Bacll;)li):sieng Leavi ng Com ments

Noq sy
LaSPACY.

= |f you can fit your comment on one line, then simply type two
backslashes followed by your text

= |f you need more room, then use a backslash and asterisk
combination to comment over multiple lines

= You can highlight a block of information and press ctrl +
backslash to comment the entire block

// Leave a one-line comment like this

/* Use as many lines as needed in order to provide
enough information for someone else to understand

your code */

LaACES

S - Student
“'a b Ballooning
i s Good Comments
522 |wvoid loop() {

25 J/*%%% Following section reads the ARdafruit GPS, parses the sentences, and sends

GGL & EMS MMER to the MTT4BT

527 if (GPS.newlMELTreceived()) { /f Wew NMEL sentence is availakle

228 NMELsentence = GPS.lastHMER() ; //Copy the NMER sentence to a String variakle

5249 NMEAtype = NMEAsentence.substring(l,7); ffPull off the NMER sentence header

531 if (MMEAtype == "IGPGGA") { /fCheck to see if the sentence is a SGEGGR

532 PCRTBSerial.print (WMERAsentence) ; //Send NMER sentence to MTT4BT PCRTEB

533 GPS.parse (GPS.lastMNMEA()) ; //Parse the sentence

534 }

535 else if (NMEAtype == "SGPRMC") { /fCheck to see if the sentence is a SGPRMC

236 PCRTBSerial.print (WMEAsentence) ; //Send NMEZR sentence to MTT4BT PCRTEB

537 GPS.parse (GPS.lastNMELR()) ; /fParse the sentence

538 }

539 else if (NMEAtype == "SPMTEO") { //This is an acknowledgement for the GPS config command
540 Serial.print ("\n*** Found S$PMTE *%* "}, //This sentence could be parsed for a cmd execute status
341 }

o242 else if (NMEZtype == "SPGRCE") { /fThis is an acknowledgement for the GPS config command
543 Serial.print ("\n*** Found SPGACEK *** ");: //This sentence could ke parsed for a cmd execute status
544 }

345 UpdatehweRlt () ; //Update the average altitude array

S46 }

Figure 12: This an example of good commenting. Notice the comments explaining each
step and the use of white space to help the user understand the code.

LSU rev20240724 LO6.01

27

YS
MR &y

/‘S‘/

LaSPACY.

e 00
Noq g1N?

e,p@
z
O
m
w
po
3

LaACES
Student

Ballooning
Course

ring GetCUTResponse() {

v

int templen = 0;
unsigned long StartTime = millis();
unsigned long TimeOut = 100000; f/ Time out in microseconds
long DeltaTime = 0; // Elapsed time in micros since start

unsigned

lean

Beg = false;

boolean End = false;
StartTime = microsl();
DeltaTime = 0
for {int i = 0; i <« 35; i++) temp[i] = "H0°;
while (!End £& (DeltaTime < TimeOut)) {
if (¥Bee.availakle()) {
X = XBee.readl();
switch({X) {
case '32':
Beq = trus;
break;
case 3
End = true;
break;
default:
if (Beg &£& isPrintable (X)) temp[templent++] = X;
break; }}
DeltaTime = microz() - StartTime; }

if (Emnd)

else return

return (String (temp)) ;

[("TimeCut");}

LSU rev20240724 LO6.01

Bad Comments

Figure 13: This an example of bad
commenting. The lack of
comments make the code
difficult for a user to follow and
understand the purpose of this
function.

28

O
& . Tr»,
& “ 3
(o] .
@
% 'rc’.F.'§

&

’1/

/ 91 \Q\

@‘%; LaACES
Student

= mm \Jarsion Control

 While developing software, it is important to
track the changes made within your code. This is
accomplished by version control.

* Version Control is the practice of managing and
recording changes to software or other

frec
e Wit
frec

uently changed documents
nout version control, changes are more

uently lost, miscommunicated, or duplicated.

* Version control helps facilitate effective
communication in development teams.

LaACES
Student
W% B2 Ballooning

Course

- o
e - o
//70_' SL"‘%

LaSPACY.

In large software projects,
version control is often
handled by a version control
system developed by a third
party. A version control
system (VCS) is a software
program that creates and
tracks multiple versions of a
codebase on a server.

Some examples of VCS
software include GitHub,
Subversion, and BitKeeper

LSU rev20240724

Version Control Systems

The most popular HTML, CSS, and JavaScript framewark for developing responsive, mabile first projects on the we

https://getbootstrap.com

b.

D 19,051 commit: ¥ 56 branches > 55 releases 22 1,089 contributors g MIT
Branch: Clone or download ~
. XhmikosR Drop support for Nodejs 8. (229496) ... 2 hours ago
.github Drop support for Nodejs 8. (#29496) ours ag
build return to the original file structure to avoid breaking modularity 7 day
dist Dist 4] 2 day
js Ren:. ou
nug nth:
SCSS 6 days
site 3 day
&l .babel h fi Qi nth:
[El .browserslistrc [WIP] Bump supported browsers for v5 (#28317) nth:
B -editol fig Trim trailing whitespace from markdown files (#29460) day:
[l .eslintignare Ignore sw.js. nth:
B -eslint Update devDependencies. (#29447) 3 days
[E -gitattributes Revert "Simplify .gitattributes. last year
B nth
B Merge lint scripts (#29329) s
B Update devDependencies and gems. (#28094) r

[El CODE_OF_CONDUCT.md Use https when possible.

Figure 14: Example of a GitHub repository for a large

software program

LO6.01

30

OP‘pLYSTE*
A%): LaACES
| A Student
s

L) paloonin Working Copies and Branches

Noq s L‘,\'&
ZLaSPACK.

In development, it is often useful for multiple programmers to
edit software at the same time.

The initial copy of the software that the programmers begin
with is called the working copy or baseline. The edited
software that each programmer creates is known as a branch.
Multiple branches may exist at the same time. A branch may
become the working copy when the team agrees to shift to
the new branch for further development work.

When a programmer is finished with his or her changes to the
branch, they may compile a change list which summarizes all
changes made to the software.

LaACES
Student
* Ballooning

1 \:‘..’§} °
e Sl File Tags
/28PACY. BESe

CDR GV0.1.docx
CDR GV0.2.docx
CDR GV0.22.docx

In version control, a file tag is a series
of numbers or letters that designate
the version of an existing document or
software. File tags often include a
version number that in incremented
with any changes or the date the file
was modified.

CDR GV1.0.docx
CDR GV1.1.docx
CDR GV1.2.docx
CDR G\1.3.docx
CDR G\1.4.docx
CDR G\1.5.docx
CDR GV1.6.docx
CDR G\1.7.docx
CDR GV1.8.docx
CDR GV1.9.docx
CDR GV1.10.docx

The system for updating the file tag is
defined during project creation and is
followed throughout the lifetime of
the project.

CDR G\1.11.docx
CDR GV1.12.docx
CDR GV2.0.docx
CDR GV2.1.docx

B mE mE mE nE mE i §E mE mE mE [§E mE mE nE mE b

oo oouooo4ogoooodg

CDR GV2.1.pdf

Figure 15: Example of a file tag system
for iterations of a document

LSU rev20240724 L06.01 32

LaACES
Student
Ballooning

o8 mie Eunction Version History

* It is useful to track changes of a function. This can be
done by implementing a change log inside the code

100 String MakeFileName () {

Figure 16: Example of a
change log for a function.
After the description of a
function, include version
history. This will tell a user
when any changes were
made and what those
changes were.

LSU rev20240724 LO6.01 33

LaACES

-7 e Sketch Version History

e Like functions, sketch changes should be documented.
This should be done in the beginning of the sketch

Figure 17: Example of
version history for a sketch.
Every time the sketch is
worked on, a new section is
added describing the
changes that were made.

LSU rev20240724 L06.01 34

LYST 5*

$ >, LaACES
g . f;».q Z

o 2 Student
G

= menne Traybleshooting Your Code

/ 91 \Q\

= Check syntax

" Check punctuation: semicolons, brackets and
parenthesis must be placed correctly

" Ensure correct placement of conditional
statements and loops

= Use correct data types

= Make sure global and local variables are
accessible to the appropriate functions

LaACES
Student

é% iﬁf Ballooning e
i e Good Bookkeeping

= There is typically more than one way of writing a
program to accomplish a particular task; as such,
programmers tend to have their own styles

" |tis good practice to write your code in a manner that is
easy for you to navigate through and clear enough for
others to understand

" Practice taking advantage of whitespace, utilize control
characters, identify variables and functions using
descriptive names, and always comment your code

= Work to establish good habits while you are learning

. LaACES
5 Student
* Ballooning

“‘i. GES]

R Sl References
no A\
/28PACK. DU

" For a list of Arduino keywords, visit
https://www.arduino.cc/reference/en/

LSU rev20240724 L06.01

37

https://www.arduino.cc/reference/en/

	Slide 1: Introduction to Programming
	Slide 2
	Slide 3: The World of Computer Logic
	Slide 4: Number Representations
	Slide 5: Binary Number System
	Slide 6: Conversion: Binary to Decimal
	Slide 7: Conversion: Decimal to Binary
	Slide 8: Hexadecimal System
	Slide 9: Common Programming Languages
	Slide 10: Variables
	Slide 11: Data Types
	Slide 12: 2’s Complement
	Slide 13: Operators
	Slide 14: Arithmetic Operators
	Slide 15: Logical Operators
	Slide 16: Conditional Operators
	Slide 17: Bitwise Operators
	Slide 18: Comparison Operators
	Slide 19: Functions
	Slide 20: Void
	Slide 21: Conditional Statements: If/Else
	Slide 22: Loops
	Slide 23: For Loops
	Slide 24: While Loops
	Slide 25: Do/While Loops
	Slide 26: Leaving Comments
	Slide 27: Good Comments
	Slide 28: Bad Comments
	Slide 29: Version Control
	Slide 30: Version Control Systems
	Slide 31: Working Copies and Branches
	Slide 32: File Tags
	Slide 33: Function Version History
	Slide 34: Sketch Version History
	Slide 35: Troubleshooting Your Code
	Slide 36: Good Bookkeeping
	Slide 37: References

