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What is a Distribution

• Gives the relative chance (probability) getting a specific value when making 1 

measurement of a particular quantity

– As you make repeated measurements you are pulling more possible values out of the 

distribution

• You usually make a guess about the distribution for the measurement based on previous 

measurements, often assume the Normal Distribution

• When you make a single measurement you sampling the distribution, with multiple 

samples we can start to make more accurate statements about the distribution

• Shows how you should see the measurements to be distributed over all possible values if 

you were able to repeat the measurement and infinite amount of time

• Only addresses the random error, systematic error is assumed to be small or 0
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Gaussian Distribution
• Most commonly used distribution

• Also called Normal Distribution

• 𝑃(𝑥) = 𝑘 ∗ 𝑒
−

𝑥−𝜇 2

2𝜎2

• 3 constants in equation

– μ is the mean, the center and peak 

of the distribution and the most 

likely value

– σ is the called variance which 

controls the width

– The height is how to get that value 

when making a measurement

– k is the normalization just scales the 

whole thing so that the sum 

(integral) is 1
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A Gaussian distribution with μ=10 and σ=3, the vertical 

lines show 1σ and 2σ from the mean. The green region 

contains about 67% of the total area and the combined 

green and blue contain 95% of the total area.



The Mean

• There are in fact 2 means we want to think about

• μ the mean of the distribution (Could be thought of as the true 

mean)

– It is the average value of all possible measurements multiplied by how likely 

you are to get that measurement

• X the mean of the sample (i.e. the average value you measured)

– X=σ 𝑥𝑖/𝑁 : where xi are all the individual measurements and N is the number 

of measurements

– By taking a limited number of measurements we get an estimate of the 

distribution mean μ, as we take many measurements N becomes large and the 

estimate approaches the true value
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Standard Deviations

• Standard Deviation by itself is 

a somewhat imprecise that 

could have different meanings 

in different contexts/fields

• Because of this you want to be 

specific which one you are 

using (define the equation 

somewhere in your writing)

• Not the same as the 

distribution σ

• 3 Standard Deviations with 3 

Different meanings 

• Population Standard Deviation

σ𝑝 =
Σ 𝑥𝑖 − 𝜇 2

𝑁

• Sample Standard Deviation

σ𝑠 =
Σ 𝑥𝑖 − 𝑋 2

𝑁 − 1

• Standard Deviation of the Mean

σ𝑚 =
𝜎𝑠

2

𝑁
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Standard Deviation 

(Population)

• σ𝑝 =
Σ 𝑥𝑖−𝜇 2

𝑁

• Note that it depends on having the entire population which for 

many applications you do not know

• However, if your measurements are the entire set of values you 

are interested in (the entire population) you could use this
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Standard Deviation (Sample)

• σ𝑠 =
Σ 𝑥𝑖−𝑋 2

𝑁−1

• Because N-1<N σs will always be 

larger than σp

• As N becomes large the -1 doesn’t 

really matter so for a large enough N, 

σp=σs

• Used when you only have a limited 

sample of distribution (almost always 

the case)

• With 1 measurement you get 
0

0
, 

which is undefined, but that makes 

sense because you can not make any 

meaningful statement about a 

distribution based on 1 sample other 

than saying that sample is in the 

distribution

• As N becomes very large σs will 

equal σ from the distribution
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Standard Deviation of the 

Mean

• σ𝑚 =
𝜎𝑠

2

𝑁

• With σp,σs you are making estimating the error in 

a single measurement (estimating σ)

• σm you estimating how close to X (your sample 

mean) is to μ (the true mean of the distribution), 

the error in X

• Unlike σp,σs as N becomes very large σm will 

become zero
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Example: Standard Deviation

• Suppose we make 5 

measurements of the 

temperature a with a 

digital thermometer 

that reads out to 0.1 

Degrees

• First calculate the sum
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Example: Standard Deviation

• Suppose we make 5 

measurements of the 

temperature a with a 

digital thermometer 

that reads out to 0.1 

Degrees

• First calculate the sum

• Next calculate the 

mean

LSU rev20240724 L05.02 10



Example: Standard Deviation

• Then you need to 

subtract the mean from 

each measurement
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Example: Standard Deviation

• Then you need to 

subtract the mean from 

each measurement

• Then square each of 

them
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Example: Standard Deviation

• Then you need to 

subtract the mean from 

each measurement

• Then square each of 

them

• Sum the squares
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Example: Standard Deviation

• Then you need to subtract the mean from each 

measurement

• Then square each of them

• Sum the squares

• Divide by N-1
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Example: Standard Deviation

• Then you need to 

subtract the mean from 

each measurement

• Then square each of 

them

• Sum the squares

• Divide by N-1

• And take the square 

root
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Example: Standard Deviation

• Most programs have a 

built-in standard 

deviation function you 

can use

• But be careful to use 

the correct (sample not 

population)
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Example: Standard Deviation

• Most programs have a 

built-in standard 

deviation function you 

can use

• But be careful to use 

the correct (sample not 

population)

• We can see gives the 

same result as doing it 

step by step
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Example: Standard Deviation

• But what if we did the 

measurement with a bulb 

thermometer that could 

only has 0.5 deg 

resolution

• We get 0 for both the 

Standard Deviation and 

SD of the mean

• Does that mean no error?
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What if my Standard 

Deviation is 0(or very small)?

• Let’s say I measure the length of a metal bar with a ruler 10 times with a ruler 

marked in mm and I get 12mm each time

• Calculating the σs you get 0 so I know the bar is exactly 12 mm, no uncertainty, 

down to the smallest fraction of a mm, right?

• NO! We have completely left out the other type of uncertainty, systematic

• Since the ruler is only marked in 1mm increments we would probably want to 

estimate the systematic error to be at least that large

– Maybe you could argue 0.5mm but clearly if this was a digital measurement you couldn’t go 

smaller than the last displayed digit

– You would also want to include any accuracy given by the manufacturer specifications

• Need to estimate the systematic uncertainty and add it to the random uncertainty

• The steps of the measuring device are larger than the width of the distribution
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Adding Errors

• Clearly the simplest solution would be to just add 

the errors together
𝜎 = 𝜎1+ 𝜎2

• But we don’t really expect them both to be at a 

max at the same time so can instead add them in 

quadrature 
𝜎 =  𝜎1

2 + 𝜎2
2

• This assumes independent variables and normal 

distribution
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Example: Adding Error

• Returning to our temperature 

example we can add the 

systematic and random errors

• 𝜎 =  𝜎𝑟𝑎𝑛𝑑
2 + 𝜎𝑠𝑦𝑠

2

• For the bulb thermometer its 

easy, the random error we 

calculated was 0 so:

• 𝜎 =  0 2 + 0.52=0.5°C

• For a less trivial example 

lets look at the digital 

thermometer

• 𝜎 =  0.1 2 + 0.3286 2

        = 0.34347 °C
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Propagation of Error

• If f is a function of variables (x1,x2,…)

𝜎𝑓 =
𝜕𝑓

𝜕𝑥1
 𝜎𝑥1

2

+
𝜕𝑓

𝜕𝑥2
𝜎𝑥2

2

+ ⋯

• This is a generalization of the addition formula

• Assumes independent variables and normal distribution

• Partial Derivative treat all other variables as constants and 

take the derivative of that one variable (feel free to look 

up the derivatives)
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Example Propagation of Error

• We want to know the 

volume of a rectangular 

object with dimensions of 

10 mm x 12 mm x 5 mm

• The error for each 

measurement is dominated 

by systematic for each is 

0.5mm

• 𝑉 = 𝑙 ∗ 𝑤 ∗ ℎ

• 𝑉 =
10𝑚𝑚 ∗ 12𝑚𝑚 ∗ 5𝑚𝑚
= 600 𝑚𝑚3

LSU rev20240724 L05.02 23



Example Propagation of Error

• 𝑉 = 𝑙 ∗ 𝑤 ∗ ℎ

• V is a function of 3 variables l, w, and h

• 𝜎𝑉 =
𝜕𝑉

𝜕𝑙
 𝜎𝑙

2
+

𝜕𝑉

𝜕𝑤
𝜎𝑤

2
+

𝜕𝑉

𝜕ℎ
𝜎ℎ

2

•
𝜕𝑉

𝜕𝑙
= 𝑤 ∗ ℎ 

𝜕𝑉

𝜕𝑤
= 𝑙 ∗ ℎ

𝜕𝑉

𝜕ℎ
= 𝑤 ∗ ℎ

• 𝜎𝑉 = 𝑤ℎ𝜎𝑙
2 + 𝑙ℎ𝜎𝑤

2 + 𝑙𝑤𝜎ℎ
2
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Example Propagation of Error

https://laspace.lsu.edu/laaces/wp-content/uploads/2020/08/R05.02_Propagation_of_Errors.pdf

https://laspace.lsu.edu/laaces/wp-content/uploads/2020/08/R05.02_Propagation_of_Errors.pdf

• 𝜎𝑉 = 𝑤ℎ𝜎𝑙
2 + 𝑙ℎ𝜎𝑤

2 + 𝑙𝑤𝜎ℎ
2

• Notice each term in parenthesis has units of volume

• 𝜎𝑙 = 𝜎𝑤 = 𝜎ℎ = 0.5 𝑚𝑚

• 𝜎𝑉 = 12 ∗ 5 ∗ 0.5 2 + 10 ∗ 5 ∗ 0.5 2 + 10 ∗ 12 ∗ 0.5 2

• 𝜎𝑉 = 71.5 𝑚𝑚3

• The volume is 600±70 mm3

• More examples available in R05.02 Propagation of Error

• https://laspace.lsu.edu/laaces/wp-

content/uploads/2020/08/R05.02_Propagation_of_Errors.pdf 
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But why Gaussian?
• If there are other distributions, why do we usually assume 

a Gaussian Distributions

• In the large number case (big N) other distributions 

become close to a Gaussian

• There is good math for doing propagation and error 

handling

• It is a good model for many physical measurements

– Can prove this is the case from a very many very small 

errors adding up from the Central Limit Theorem
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Reporting Measurements
• If I think the error in a measurement is 0.5 mm does it make sense 

to report the average as 12.003mm

• The common practice is to round the error to 1 or 2 significant digit 

and then round the corresponding measurement to that digit 

– We would report the values as 12.0±0.5mm

• Do not round intermediate values used for calculations because you 

do not want to have rounding errors compound

• Errors should have the same units as the measurement

• You want to be clear about how you have calculated errors and 

what you mean with your ±, show your work
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Putting it all together

• Let’s assume, we first did repeated 

temperature measurements at one 

temperature to show the random 

error is small compared to the 0.5 

error from our bulb thermometer

• From the pixel size and signal width 

in software we estimate the 

systematic uncertainty of to be 11 Hz

• We decide we need to take 5 

independent frequency 

measurements at each temperature 
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Putting it all together

• We will calculate the mean of our 5 

frequencies and use that as our fitting 

point

• We then need to calculate the 

standard deviation of that mean to 

determine the random frequency 

error for that mean value

• The we need to add the systematic 

frequency error to the random to find 

the total frequency error

• Doing this gives us our first 

datapoint (1257.8±14 Hz, 95.0 

±0.5°C)

LSU rev20240724 L05.02 29



Calculating all our data points

• Now repeat the process 

for all temperature and 

frequency measurements

• This gives us a set of x 

(frequency) and y 

(temperature) points with 

a horizontal and vertical 

error for each datapoint
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Plot the points

• Now we want to plot all of the 

points together

• Since the goal of the 

experiment is to be  able to 

read a frequency and be able to 

tell what temperature the 

thermistor is, we want T as a 

function f

• So we pick f as the x values 

and T as the y values
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Add Error Bars
• We add the error bars to our plot

• Select in this case our error is 

symmetric, so we use the same 

value for both the positive and 

negative error

• We want to select the option 

that lets use specify values for 

error and not a percentage, 

standard deviation, or fixed 

value for example

• Add both horizontal and vertical 

error bars, using the errors we 

calculated

• It may be necessary to adjust to 

point marker size or add a 

caption if the errors are small
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Adding a trendline

• If appropriate we may want to add a trendline

• Clearly the data is not linear

• Ideally, we would have some theoretical basis for picking a particular fit but we 

can also try seeing what matches the data

• Also probably want to show the equation of the fit on out plot
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Finish the Plot and Draw 

Conclusions
• Don’t forget to add the axes titles, units, plot title, etc.

• If we have a good fit and correctly assessed our errors, we expect 

~2/3 of our points error bars to overlap with our fit line (Remember 

67% 1σ)

• Many less than 2/3

– Maybe not a good fit function

– Possibly underestimated errors, missed systematics

• Many more than 2/3

– Too many constants in your function

– Overestimated error, manufacturer specification often give “guaranteed to be 

this accurate” rather than a more scientific error
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