

Errors and Uncertainty Part 2

What is a Distribution

- Gives the relative chance(probability) getting a specific value when making 1 measurement of a particular quantity
 - As you make repeated measurements you are pulling more possible values out of the distribution
- You usually make a guess about the distribution for the measurement based on previous measurements, often assume the Normal Distribution
- When you make a single measurement you sampling the distribution, with multiple samples we can start to make more accurate statements about the distribution
- Shows how you should see the measurements to be distributed over all possible values if you were able to repeat the measurement and infinite amount of time
- Only addresses the random error, systematic error is assumed to be small or 0

Gaussian Distribution

- Most commonly used distribution
- Also called Normal Distribution

•
$$P(x) = k * e^{-\left(\frac{(x-\mu)^2}{2\sigma^2}\right)}$$

- 3 constants in equation
 - μ is the mean, the center and peak of the distribution and the most likely value
 - σ is the called variance which controls the width
 - The height is how to get that value when making a measurement
 - k is the normalization just scales the whole thing so that the sum (integral) is 1

A Gaussian distribution with μ =10 and σ =3, the vertical lines show 1 σ and 2 σ from the mean. The green region contains about 67% of the total area and the combined green and blue contain 95% of the total area.

The Mean

- There are in fact 2 means we want to think about
- μ the mean of the distribution (Could be thought of as the true mean)
 - It is the average value of all possible measurements multiplied by how likely you are to get that measurement
- X the mean of the sample (i.e. the average value you measured)
 - $X=\sum x_i/N$: where x_i are all the individual measurements and N is the number of measurements
 - By taking a limited number of measurements we get an estimate of the distribution mean μ , as we take many measurements N becomes large and the estimate approaches the true value

Standard Deviations

- Standard Deviation by itself is a somewhat imprecise that could have different meanings in different contexts/fields
- Because of this you want to be specific which one you are using (define the equation somewhere in your writing)
- Not the same as the distribution σ
- 3 Standard Deviations with 3 Different meanings

• Population Standard Deviation

$$\sigma_p = \sqrt{\frac{\Sigma (x_i - \mu)^2}{N}}$$

Sample Standard Deviation

$$\sigma_{S} = \sqrt{\frac{\Sigma(x_{i} - X)^{2}}{N - 1}}$$

Standard Deviation of the Mean

$$\sigma_m = \sqrt{\frac{\sigma_s^2}{N}}$$

Standard Deviation (Population)

•
$$\sigma_p = \sqrt{\frac{\Sigma(x_i - \mu)^2}{N}}$$

- Note that it depends on having the entire population which for many applications you do not know
- However, if your measurements are the entire set of values you are interested in (the entire population) you could use this

Standard Deviation (Sample)

$$\bullet \quad \sigma_S = \sqrt{\frac{\Sigma (x_i - X)^2}{N - 1}}$$

- Because N-1<N σ_s will always be larger than σ_p
- As N becomes large the -1 doesn't really matter so for a large enough N, $\sigma_p = \sigma_s$
- Used when you only have a limited sample of distribution (almost always the case)
- With 1 measurement you get $\frac{0}{0}$, which is undefined, but that makes sense because you can not make any meaningful statement about a distribution based on 1 sample other than saying that sample is in the distribution
- As N becomes very large σ_s will equal σ from the distribution

Standard Deviation of the Mean

•
$$\sigma_m = \sqrt{\frac{\sigma_s^2}{N}}$$

- With σ_{p,σ_s} you are making estimating the error in a single measurement (estimating σ)
- σ_m you estimating how close to X (your sample mean) is to μ (the true mean of the distribution), the error in X
- Unlike $\sigma_{p,}\sigma_{s}$ as N becomes very large σ_{m} will become zero

- Suppose we make 5 measurements of the temperature a with a digital thermometer that reads out to 0.1 Degrees
- First calculate the sum

В	7	▼ : × ✓ f _x =SUM(B2:B6)			2:B6)
4	Α	В	С	D	Е
1		Value			
2		35.0			
3		35.0			
4		34.8			
5		34.5			
6		35.4			
7	Total	174.7			
8	N	5			
9	Mean	34.940000			

- Suppose we make 5 measurements of the temperature a with a digital thermometer that reads out to 0.1 Degrees
- First calculate the sum
- Next calculate the mean

	B9)	• : ×	√ f _x	=B7/B8
•	4	Α	В	С	D
	1		Value		
	2		35.0)	
	3		35.0)	
	4		34.8	3	
	5		34.5	5	
	6		35.4	ļ	
	7	Total	174.7	7	
	8	N	5	5	
	9	Mean	34.940000)	

• Then you need to subtract the mean from each measurement

- Then you need to subtract the mean from each measurement
- Then square each of them

F6	F6 • Fx =D6^2						
4	Α	В	С	D	Ε	F	
1		Value		Value - Mean		Squared	
2		35.0		0.0600		0.0036	
3		35.0		0.0600		0.0036	
4		34.8		-0.1400		0.0196	
5		34.5		-0.4400		0.1936	
6		35.4		0.4600		0.2116	
7	Total	174.7					
8	N	5					
9	Mean	34.9400					
10							

- Then you need to subtract the mean from each measurement
- Then square each of them
- Sum the squares

F7	F7 • : × ✓ f _x =SUM(F2:F6)						
4	Α	В	С	D	Е	F	(
1		Value		Value - Mean		Squared	
2		35.0		0.0600		0.0036	
3		35.0		0.0600		0.0036	
4		34.8		-0.1400		0.0196	
5		34.5		-0.4400		0.1936	
6		35.4		0.4600		0.2116	
7	Total	174.7		Sum of the Squared		0.4320	
8	N	5					
9	Mean	34.9400					
10							
11							
12							

- Then you need to subtract the mean from each measurement
- Then square each of them
- Sum the squares
- Divide by N-1

- Then you need to subtract the mean from each measurement
- Then square each of them
- Sum the squares
- Divide by N-1
- And take the square root

- Most programs have a built-in standard deviation function you can use
- But be careful to use the correct (sample not population)

- Most programs have a built-in standard deviation function you can use
- But be careful to use the correct (sample not population)
- We can see gives the same result as doing it step by step

F1	.0	▼ : × ✓ ;	f _x	=STDEV.S(B2:B6)		
1	Α	В	С	D	Ε	F
1		Value		Value - Mean		Squared
2		35.0		0.0600		0.0036
3		35.0		0.0600		0.0036
4		34.8		-0.1400		0.0196
5		34.5		-0.4400		0.1936
6		35.4		0.4600		0.2116
7	Total	174.7		Sum of the Squared		0.4320
8	N	5		Divide by N-1		0.1080
9	Mean	34.9400		Take the Square Root		0.328633535
10				or Just use formula		0.328633535

- But what if we did the measurement with a bulb thermometer that could only has 0.5 deg resolution
- We get 0 for both the Standard Deviation and SD of the mean
- Does that mean no error?

What if my Standard Deviation is 0(or very small)?

- Let's say I measure the length of a metal bar with a ruler 10 times with a ruler marked in mm and I get 12mm each time
- Calculating the σ_s you get 0 so I know the bar is exactly 12 mm, no uncertainty, down to the smallest fraction of a mm, right?
- NO! We have completely left out the other type of uncertainty, systematic
- Since the ruler is only marked in 1mm increments we would probably want to estimate the systematic error to be at least that large
 - Maybe you could argue 0.5mm but clearly if this was a digital measurement you couldn't go smaller than the last displayed digit
 - You would also want to include any accuracy given by the manufacturer specifications
- Need to estimate the systematic uncertainty and add it to the random uncertainty
- The steps of the measuring device are larger than the width of the distribution

Adding Errors

• Clearly the simplest solution would be to just add the errors together

$$\sigma = \sigma_1 + \sigma_2$$

• But we don't really expect them both to be at a max at the same time so can instead add them in quadrature

$$\sigma = \sqrt{(\sigma_1)^2 + (\sigma_2)^2}$$

This assumes independent variables and normal distribution

Example: Adding Error

 Returning to our temperature example we can add the systematic and random errors

•
$$\sigma = \sqrt{(\sigma_{rand})^2 + (\sigma_{sys})^2}$$

• For the bulb thermometer its easy, the random error we calculated was 0 so:

•
$$\sigma = \sqrt{(0)^2 + 0.5^2} = 0.5^{\circ} \text{C}$$

 For a less trivial example lets look at the digital thermometer

•
$$\sigma = \sqrt{(0.1)^2 + (0.3286)^2}$$

= 0.34347 °C

Propagation of Error

• If f is a function of variables $(x_1, x_2,...)$

$$\sigma_f = \sqrt{\left(\frac{\partial f}{\partial x_1} \sigma_{x1}\right)^2 + \left(\frac{\partial f}{\partial x_2} \sigma_{x2}\right)^2 + \cdots}$$

- This is a generalization of the addition formula
- Assumes independent variables and normal distribution
- Partial Derivative treat all other variables as constants and take the derivative of that one variable (feel free to look up the derivatives)

Example Propagation of Error

- We want to know the volume of a rectangular object with dimensions of 10 mm x 12 mm x 5 mm
- The error for each measurement is dominated by systematic for each is 0.5mm

- V = l * w * h
- $V = 10mm * 12mm * 5mm = 600 mm^3$

Example Propagation of Error

•
$$V = l * w * h$$

• V is a function of 3 variables 1, w, and h

•
$$\sigma_V = \sqrt{\left(\frac{\partial V}{\partial l} \sigma_l\right)^2 + \left(\frac{\partial V}{\partial w} \sigma_w\right)^2 + \left(\frac{\partial V}{\partial h} \sigma_h\right)^2}$$

•
$$\frac{\partial V}{\partial l} = w * h$$
 $\frac{\partial V}{\partial w} = l * h$ $\frac{\partial V}{\partial h} = w * h$

•
$$\sigma_V = \sqrt{(wh\sigma_l)^2 + (lh\sigma_w)^2 + (lw\sigma_h)^2}$$

Example Propagation of Error

•
$$\sigma_V = \sqrt{(wh\sigma_l)^2 + (lh\sigma_w)^2 + (lw\sigma_h)^2}$$

- Notice each term in parenthesis has units of volume
- $\sigma_l = \sigma_w = \sigma_h = 0.5 \ mm$
- $\sigma_V = \sqrt{(12 * 5 * 0.5)^2 + (10 * 5 * 0.5)^2 + (10 * 12 * 0.5)^2}$
- $\sigma_V = 71.5 \ mm^3$
- The volume is $600\pm70 \text{ mm}^3$
- More examples available in R05.02 Propagation of Error
- https://laspace.lsu.edu/laaces/wp-content/uploads/2020/08/R05.02 Propagation of Errors.pdf

But why Gaussian?

- If there are other distributions, why do we usually assume a Gaussian Distributions
- In the large number case (big N) other distributions become close to a Gaussian
- There is good math for doing propagation and error handling
- It is a good model for many physical measurements
 - Can prove this is the case from a very many very small errors adding up from the Central Limit Theorem

Reporting Measurements

- If I think the error in a measurement is 0.5 mm does it make sense to report the average as 12.003mm
- The common practice is to round the error to 1 or 2 significant digit and then round the corresponding measurement to that digit
 - We would report the values as 12.0±0.5mm
- Do not round intermediate values used for calculations because you do not want to have rounding errors compound
- Errors should have the same units as the measurement
- You want to be clear about how you have calculated errors and what you mean with your \pm , show your work

Putting it all together

- Let's assume, we first did repeated temperature measurements at one temperature to show the random error is small compared to the 0.5 error from our bulb thermometer
- From the pixel size and signal width in software we estimate the systematic uncertainty of to be 11 Hz
- We decide we need to take 5 independent frequency measurements at each temperature

	Temp (C)	95.0	Error in T	0.5	
	Frequen	cies (Hz)			
Beep#	1	2			
1	3767	5038	1271		
2	3724	4995	1271		
3	3746	4995	1249		
4	3746	5016	1270		
5	3767	4995	1228		
		Mean	1257.8		
		Std Dev	19.12328		
		SD Mean	8.552193		
		Syst Err	11		
		Total Freq			
		Error	13.93341		
1			1		

Putting it all together

- We will calculate the mean of our 5 frequencies and use that as our fitting point
- We then need to calculate the standard deviation of that mean to determine the random frequency error for that mean value
- The we need to add the systematic frequency error to the random to find the total frequency error
- Doing this gives us our first datapoint (1257.8±14 Hz, 95.0 ±0.5°C)

	Temp (C)	95.0	Error in T	0.5	
	Frequen	cies (Hz)			
Beep#	1	2			
1	3767	5038	1271		
2	3724	4995	1271		
3	3746	4995	1249		
4	3746	5016	1270		
5	3767	4995	1228		
		Mean	1257.8		
		Std Dev	19.12328		
		SD Mean	8.552193		
		Syst Err	11		
		Total Freq			
		Error	13.93341		
	1				

Calculating all our data points

- Now repeat the process for all temperature and frequency measurements
- This gives us a set of x
 (frequency) and y
 (temperature) points with
 a horizontal and vertical
 error for each datapoint

4	С	D	E	F	G
1	Temperature (C)	Error T	Frequency (Hz)	Error f	
2	95.0	0.5	1257.8	13.93341	
3	90.0	0.5	1111	16.90266	
4	77.0	0.5	981.8	15.44798	
5	68.0	0.5	771.6	11.84736	
6	52.0	0.5	728	11.7047	
7	40.0	0.5	616	12.21475	
8	35.0	0.5	560	13.01538	
9	26.0	0.5	508.4	12.19672	
10	14.0	0.5	495	11	
11	5.0	0.5	487.2	12.24908	
12					
12					

Plot the points

- Now we want to plot all of the points together
- Since the goal of the experiment is to be able to read a frequency and be able to tell what temperature the thermistor is, we want T as a function f
- So we pick f as the x values and T as the y values

Add Error Bars

- We add the error bars to our plot
- Select in this case our error is symmetric, so we use the same value for both the positive and negative error
- We want to select the option that lets use specify values for error and not a percentage, standard deviation, or fixed value for example
- Add both horizontal and vertical error bars, using the errors we calculated
- It may be necessary to adjust to point marker size or add a caption if the errors are small

L05.02 32

LaACES Student Ballooning

Adding a trendline

- If appropriate we may want to add a trendline
- Clearly the data is not linear
- Ideally, we would have some theoretical basis for picking a particular fit but we can also try seeing what matches the data
- Also probably want to show the equation of the fit on out plot

Finish the Plot and Draw Conclusions

- Don't forget to add the axes titles, units, plot title, etc.
- If we have a good fit and correctly assessed our errors, we expect $\sim 2/3$ of our points error bars to overlap with our fit line (Remember 67% 1σ)
- Many less than 2/3
 - Maybe not a good fit function
 - Possibly underestimated errors, missed systematics
- Many more than 2/3
 - Too many constants in your function
 - Overestimated error, manufacturer specification often give "guaranteed to be this accurate" rather than a more scientific error