Errors and Uncertainty Part 2

LaACES
Student
Ballooning
Course

What is a Distribution

- Gives the relative chance(probability) getting a specific value when making 1 measurement of a particular quantity
- As you make repeated measurements you are pulling more possible values out of the distribution
- You usually make a guess about the distribution for the measurement based on previous measurements, often assume the Normal Distribution
- When you make a single measurement you sampling the distribution, with multiple samples we can start to make more accurate statements about the distribution
- Shows how you should see the measurements to be distributed over all possible values if you were able to repeat the measurement and infinite amount of time
- Only addresses the random error, systematic error is assumed to be small or 0

Gaussian Distribution

- Most commonly used distribution
- Also called Normal Distribution
- $P(x)=k * e^{-\left(\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)}$
- 3 constants in equation
$-\mu$ is the mean, the center and peak of the distribution and the most likely value
- σ is the called variance which controls the width
- The height is how to get that value when making a measurement
- k is the normalization just scales the whole thing so that the sum (integral) is 1

Course

The Mean

- There are in fact 2 means we want to think about
- μ the mean of the distribution (Could be thought of as the true mean)
- It is the average value of all possible measurements multiplied by how likely you are to get that measurement
- X the mean of the sample (i.e. the average value you measured)
- $\mathrm{X}=\sum x_{i} / N$: where x_{i} are all the individual measurements and N is the number of measurements
- By taking a limited number of measurements we get an estimate of the distribution mean μ, as we take many measurements N becomes large and the estimate approaches the true value

Standard Deviations

- Standard Deviation by itself is a somewhat imprecise that could have different meanings in different contexts/fields
- Because of this you want to be specific which one you are using (define the equation somewhere in your writing)
- Not the same as the distribution σ
- 3 Standard Deviations with 3 Different meanings

Standard Deviation (Population)

- $\sigma_{p}=\sqrt{\frac{\Sigma\left(x_{i}-\mu\right)^{2}}{N}}$
- Note that it depends on having the entire population which for many applications you do not know
- However, if your measurements are the entire set of values you are interested in (the entire population) you could use this

Ballooning
 Course
 Standard Deviation (Sample)

- $\sigma_{s}=\sqrt{\frac{\Sigma\left(x_{i}-X\right)^{2}}{N-1}}$
- Because $\mathrm{N}-1<\mathrm{N} \sigma_{\mathrm{s}}$ will always be larger than σ_{p}
- As N becomes large the -1 doesn't really matter so for a large enough N , $\sigma_{\mathrm{p}}=\sigma_{\mathrm{s}}$
- Used when you only have a limited sample of distribution (almost always the case)
- With 1 measurement you get $\frac{0}{0}$, which is undefined, but that makes sense because you can not make any meaningful statement about a distribution based on 1 sample other than saying that sample is in the distribution
- As N becomes very large σ_{s} will equal σ from the distribution

Standard Deviation of the

Mean

- $\sigma_{m}=\sqrt{\frac{\sigma_{s}^{2}}{N}}$
- With $\sigma_{\mathrm{p},} \sigma_{\mathrm{s}}$ you are making estimating the error in a single measurement (estimating σ)
- σ_{m} you estimating how close to X (your sample mean) is to μ (the true mean of the distribution), the error in X
- Unlike $\sigma_{\mathrm{p},} \sigma_{\mathrm{s}}$ as N becomes very large σ_{m} will become zero

Example: Standard Deviation

- Suppose we make 5 measurements of the temperature a with a digital thermometer that reads out to 0.1
Degrees
- First calculate the sum

B7		\checkmark	!	\times	\checkmark	f_{x}	=SUM (B2:B6)	
4	A					C	D	E
1								
2				35.0				
3				35.0				
4				34.8				
5				34.5				
6				35.4				
7	Total			174.7				
8	N			5				
9	Mean			940000				

Example: Standard Deviation

- Suppose we make 5 measurements of the temperature a with a digital thermometer that reads out to 0.1
Degrees
- First calculate the sum

- Next calculate the mean

Example: Standard Deviation

- Then you need to subtract the mean from each measurement

D6		*	$\times \checkmark$	f_{x}	=B6-\$B\$9	
- 4	A		B	C	D	E
1		Value			Value - Mean	
2			35.0		0.0600	
3			35.0		0.0600	
4			34.8		-0.1400	
5			34.5		-0.4400	
6			35.4		0.4600	
7	Total		174.7			
8	N		5			
9	Mean		34.9400			
10						

Example: Standard Deviation

- Then you need to subtract the mean from each measurement
- Then square each of them

Example: Standard Deviation

- Then you need to subtract the mean from each measurement
- Then square each of them
- Sum the squares

F7		\checkmark	$\times \checkmark$	f_{x}	=SUM (F2:F6)			
4	A		B	C	D	E	F	c
1		Value			Value - Mean		Squared	
2			35.0		0.0600		0.0036	
3			35.0		0.0600		0.0036	
4			34.8		-0.1400		0.0196	
5			34.5		-0.4400		0.1936	
6			35.4		0.4600		0.2116	
7	Total		174.7		Sum of the Squared		0.4320	
8	N		5					
9	Mean		34.9400					
10								
11								
12								

Example: Standard Deviation

- Then you need to subtract the mean from each measurement
- Then square each of them
- Sum the squares

A	B		C	D	E	F
1		Value			Value - Mean	

- Divide by N-1

Ballooning

Course

Example: Standard Deviation

- Then you need to subtract the mean from each measurement
- Then square each of them
- Sum the squares
- Divide by N-1
- And take the square root

Course

Example: Standard Deviation

- Most programs have a built-in standard deviation function you can use
- But be careful to use

Tables			Illustrations							
SU	M	-	$\times \checkmark$	f_{x}		stdev				
4	A		B	C		(fx) STDEV.P		E	F	G
1		Value			Va	fx) STDEV.S	Estimates standard deviation based on a sample			
2			35.0			(fx) StDEVA	2600		0.0036	
3			35.0			stdev	2600		0.0036	
4			34.8			$f_{\text {A STDEVP }}$	1400		0.0196	
5			34.5			(fx) DSTDEV	1400		0.1936	
6			35.4			fx) DSTDEVP	1600		0.2116	
7	Total		174.7		Sum of the Squared				0.4320	
8	N		5		Divide by $\mathrm{N}-1$				0.1080	
9	Mean		34.9400		Take the Square Root				0.328633535	
10					or Just use formula				=stdev	
11										

LaACES Student
Ballooning
Course

Example: Standard Deviation

- Most programs have a built-in standard deviation function you can use
- But be careful to use the correct (sample not

F1		\checkmark	$\times \checkmark \boldsymbol{f}$		=STDEV.S(B2:B6)		
4	A		B	C	D	E	F
1		Value			Value - Mean		Squared
2			35.0		0.0600		0.0036
3			35.0		0.0600		0.0036
4			34.8		-0.1400		0.0196
5			34.5		-0.4400		0.1936
6			35.4		0.4600		0.2116
7	Total		174.7		Sum of the Squared		0.4320
8	N		5		Divide by $\mathrm{N}-1$		0.1080
9	Mean		34.9400		Take the Square Root		0.328633535
10					or Just use formula		0.328633535

- We can see gives the same result as doing it step by step

Example: Standard Deviation

- But what if we did the measurement with a bulb thermometer that could only has 0.5 deg resolution
- We get 0 for both the Standard Deviation and SD of the mean
- Does that mean no error?

LaACES Student Ballooning Course

What if my Standard

Deviation is 0 (or very small)?

- Let's say I measure the length of a metal bar with a ruler 10 times with a ruler marked in mm and I get 12 mm each time
- Calculating the σ_{s} you get 0 so I know the bar is exactly 12 mm , no uncertainty, down to the smallest fraction of a mm, right?
- NO! We have completely left out the other type of uncertainty, systematic
- Since the ruler is only marked in 1 mm increments we would probably want to estimate the systematic error to be at least that large
- Maybe you could argue 0.5 mm but clearly if this was a digital measurement you couldn't go smaller than the last displayed digit
- You would also want to include any accuracy given by the manufacturer specifications
- Need to estimate the systematic uncertainty and add it to the random uncertainty
- The steps of the measuring device are larger than the width of the distribution

Adding Errors

- Clearly the simplest solution would be to just add the errors together

$$
\sigma=\sigma_{1}+\sigma_{2}
$$

- But we don't really expect them both to be at a max at the same time so can instead add them in quadrature

$$
\sigma=\sqrt{\left(\sigma_{1}\right)^{2}+\left(\sigma_{2}\right)^{2}}
$$

- This assumes independent variables and normal distribution

Example: Adding Error

- Returning to our temperature example we can add the systematic and random errors
- $\sigma=\sqrt{\left(\sigma_{\text {rand }}\right)^{2}+\left(\sigma_{s y s}\right)^{2}}$
- For the bulb thermometer its easy, the random error we calculated was 0 so:
- $\sigma=\sqrt{(0)^{2}+0.5^{2}}=0.5^{\circ} \mathrm{C}$
- For a less trivial example lets look at the digital thermometer
- $\sigma=\sqrt{(0.1)^{2}+(0.3286)^{2}}$ $=0.34347{ }^{\circ} \mathrm{C}$

Propagation of Error

- If f is a function of variables $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right)$

$$
\sigma_{f}=\sqrt{\left(\frac{\partial f}{\partial x_{1}} \sigma_{x 1}\right)^{2}+\left(\frac{\partial f}{\partial x_{2}} \sigma_{x 2}\right)^{2}+\cdots}
$$

- This is a generalization of the addition formula
- Assumes independent variables and normal distribution
- Partial Derivative treat all other variables as constants and take the derivative of that one variable (feel free to look up the derivatives)

Example Propagation of Error

- We want to know the volume of a rectangular object with dimensions of $10 \mathrm{~mm} \times 12 \mathrm{~mm} \times 5 \mathrm{~mm}$
- The error for each measurement is dominated by systematic for each is
0.5 mm
- $V=l * w * h$
- $V=$
$10 \mathrm{~mm} * 12 \mathrm{~mm} * 5 \mathrm{~mm}$
$=600 \mathrm{~mm}^{3}$

Example Propagation of Error

- $V=l * w * h$
- V is a function of 3 variables $1, w$, and h
- $\sigma_{V}=\sqrt{\left(\frac{\partial V}{\partial l} \sigma_{l}\right)^{2}+\left(\frac{\partial V}{\partial w} \sigma_{w}\right)^{2}+\left(\frac{\partial V}{\partial h} \sigma_{h}\right)^{2}}$
- $\frac{\partial V}{\partial l}=w * h \quad \frac{\partial V}{\partial w}=l * h \quad \frac{\partial V}{\partial h}=w * h$
- $\sigma_{V}=\sqrt{\left(w h \sigma_{l}\right)^{2}+\left(l h \sigma_{w}\right)^{2}+\left(l w \sigma_{h}\right)^{2}}$

Example Propagation of Error

- $\sigma_{V}=\sqrt{\left(w h \sigma_{l}\right)^{2}+\left(l h \sigma_{w}\right)^{2}+\left(l w \sigma_{h}\right)^{2}}$
- Notice each term in parenthesis has units of volume
- $\sigma_{l}=\sigma_{w}=\sigma_{h}=0.5 \mathrm{~mm}$
- $\sigma_{V}=\sqrt{(12 * 5 * 0.5)^{2}+(10 * 5 * 0.5)^{2}+(10 * 12 * 0.5)^{2}}$
- $\sigma_{V}=71.5 \mathrm{~mm}^{3}$
- The volume is $600 \pm 70 \mathrm{~mm}^{3}$
- More examples available in R05.02 Propagation of Error
- https://laspace.lsu.edu/laaces/wpcontent/uploads/2020/08/R05.02_Propagation_of_Errors.pdf

But why Gaussian?

- If there are other distributions, why do we usually assume a Gaussian Distributions
- In the large number case (big N) other distributions become close to a Gaussian
- There is good math for doing propagation and error handling
- It is a good model for many physical measurements
- Can prove this is the case from a very many very small errors adding up from the Central Limit Theorem

Reporting Measurements

- If I think the error in a measurement is 0.5 mm does it make sense to report the average as 12.003 mm
- The common practice is to round the error to 1 or 2 significant digit and then round the corresponding measurement to that digit - We would report the values as $12.0 \pm 0.5 \mathrm{~mm}$
- Do not round intermediate values used for calculations because you do not want to have rounding errors compound
- Errors should have the same units as the measurement
- You want to be clear about how you have calculated errors and what you mean with your \pm, show your work

Putting it all together

- Let's assume, we first did repeated temperature measurements at one temperature to show the random error is small compared to the 0.5 error from our bulb thermometer
- From the pixel size and signal width in software we estimate the systematic uncertainty of to be 11 Hz
- We decide we need to take 5 independent frequency measurements at each temperature

	Temp (C)	95.0	Error in T	0.5
	Frequencies (Hz)			
Beep \#	1	2		
1	3767	5038	1271	
2	3724	4995	1271	
3	3746	4995	1249	
4	3746	5016	1270	
5	3767	4995	1228	
		Mean	1257.8	
		Std Dev	19.12328	
		SD Mean	8.552193	
		Syst Err	11	
		Total Freq		
		Error	13.93341	

Putting it all together

- We will calculate the mean of our 5 frequencies and use that as our fitting point
- We then need to calculate the standard deviation of that mean to determine the random frequency error for that mean value
- The we need to add the systematic frequency error to the random to find the total frequency error
- Doing this gives us our first datapoint ($1257.8 \pm 14 \mathrm{~Hz}, 95.0$

	Temp (C)	95.0	Error in T	0.5
	Frequencies (Hz)			
Beep\#	1	2		
1	3767	5038	1271	
2	3724	4995	1271	
3	3746	4995	1249	
4	3746	5016	1270	
5	3767	4995	1228	
		Mean	1257.8	
		Std Dev	19.12328	
		SD Mean	8.552193	
		Syst Err	11	
		Total Freq		
		Error	13.93341	

Calculating all our data points

- Now repeat the process for all temperature and frequency measurements
- This gives us a set of x (frequency) and y

4	c		D	E	F
1	Temperature (C)		Error T	Frequency (Hz)	Error f
2		95.0	0.5	1257.8	13.93341
3		90.0	0.5	1111	16.90266
4		77.0	0.5	981.8	15.44798
5		68.0	0.5	771.6	11.84736
6		52.0	0.5	728	11.7047
7		40.0	0.5	616	12.21475
8		35.0	0.5	560	13.01538
9		26.0	0.5	508.4	12.19672
10		14.0	0.5	495	11
11		5.0	0.5	487.2	12.24908
12					

Plot the points

- Now we want to plot all of the points together
- Since the goal of the experiment is to be able to read a frequency and be able to tell what temperature the thermistor is, we want T as a function f
- So we pick f as the x values and T as the y values

Add Error Bars

- We add the error bars to our plot
- Select in this case our error is symmetric, so we use the same value for both the positive and negative error
- We want to select the option that lets use specify values for error and not a percentage, standard deviation, or fixed value for example
- Add both horizontal and vertical error bars, using the errors we calculated

- It may be necessary to adjust to point marker size or add a caption if the errors are small

- If appropriate we may want to add a trendline
- Clearly the data is not linear
- Ideally, we would have some theoretical basis for picking a particular fit but we can also try seeing what matches the data
- Also probably want to show the equation of the fit on out plot

Finish the Plot and Draw

Conclusions

- Don't forget to add the axes titles, units, plot title, etc.
- If we have a good fit and correctly assessed our errors, we expect $\sim 2 / 3$ of our points error bars to overlap with our fit line (Remember $67 \% 1 \sigma$)
- Many less than $2 / 3$
- Maybe not a good fit function
- Possibly underestimated errors, missed systematics
- Many more than 2/3
- Too many constants in your function
- Overestimated error, manufacturer specification often give "guaranteed to be this accurate" rather than a more scientific error

