

Drawing System Diagrams

Lecture 23.02

Basic Steps

- Identify all major components
 - Derived from your project goal, objectives and requirements
- Identify all interfaces between components
 - These are either relationships or real connections between components
- Produce your drawing
 - Components are labeled boxes
 - Interfaces are arrowed lines keyed to the interface function
 - Keep your layout as straight forward as possible

Identify Components

- Components are based upon the project goal, objectives, requirements, and level of detail
- For example, system level (High Level) diagram our components would be our subsystems:
 - Requirement: Measure Something -> Sensor Subsystem
 - Requirement: Store Data for analysis -> Data Archive Subsystem
 - For your payload to operate by itself during flight you need a Control Subsystem
 - Requirement: Provide Payload Power -> Power Subsystem
 - Requirement: Maintain payload integrity through flight -> Mechanical Support Subsystem
 - Requirement: Maintain components within operating temperature -> Thermal Control Subsystem
 - Requirement: Control system from the ground -> Ground Support Subsystem
- Different kinds of subsystems may be required based on the goals and objectives of the project

Example System Level Drawing

- Each sub-system has its own box
- Components are arranged in a way to show their connections to other components
- Components do not need to be drawn in their physical arrangement

- Interfaces are the "connections" between the components
 - Could be a physical connection (e.g. wire, mechanical)
 - Could be an electrical signal (e.g. Serial, radio signal)
 - Could be a relationship / property (e.g. temperature, light)
 - We do not need to draw every wire (Could use a single line for an SPI interface [4 Wires])
- Each type of interface should be represented by a different kind of line
- Each interface should be labeled according to its specific characteristics
- Arrows on the ends of the line indicate flow
 - For example: Electrical power is usually 1 way, communications are often bidirectional)

Sample Interface representations

- Interfaces types
 - Power
 - Data
 - Control
 - Mechanical
 - Thermal
- Interface flow
 - To component
 - From component
 - Bi-directional

Add the interfaces

PERO, LAST ETA Laspace

Indicate the interface flow

Add labels

Detailing Subsystems

- Remember from System Design, we will have multiple levels of details for system drawings
- Each of the previous subsystems would have more detailed drawings
- As you develop your desin and requirements you should develop more detailed system drawings
- System drawing help you identify the interfaces and may point out an interface you have missed
- A good rule of thumb is 3 levels of system diagram in increasing detail
 - High Level System overview
 - Subsystem functional version
 - Refined Subsystem with detailed components and interfaces
- More complex subsystem will may need additional detailed levels and simpler system may not need as many

System Level Drawing Example

Subsystem Level Example

Refined Subsystem Example

Drawing Readibility

- Do not try to squeeze too much information into a single drawing
 - Give subsystems individual drawings
 - Can spread interfaces across multiple drawings
 - Could have multiple versions of the system level diagram for different sets of interfaces
- Show connections to outside systems
 - A control signal coming in a sensor subsystem
 - Do not need to draw the entire control system on the sensor drawing, but would shown in detail where it connected inside the sensor
- Try to vary line style as well as color and include a legend

Drawing Software

- Microsoft Office Suite: Visio works well
- Google Drawings
- Draw.io
- Choose something with predefined blocks and arrow connectors rather than image editing software.