
La ACES Student Ballooning Course
A15.02 – Logging Data to the SD card Part 2

LSU rev20211130 A15.02 1 of 9

Summary:

This activity will walk students through how to save data onto an SD card using the Adafruit
Ultimate GPS Logger Shield. By the end of this activity, students will understand how to save
data to an SD card, read data from an SD card, and create an csv file. This continues from part 1.

Materials:

Each student should have the following materials, equipment and supplies:

• Computer with Arduino IDE installed and microSD or SD reader
• USB-AB programming cable
• Arduino Mega microcontroller with assembled Adafruit Ultimate GPS Logger Shield

attached
• microSD card
• microSD to SD adapter (if computer has an SD reader instead of a microSD reader)

Procedure:
Activity D: Creating a CSV

1. Now we want to modify our code so it creates a simple data packet consisting of 4 numbers
and will write those to a .csv file

2. Where you created your global variables change the filename of the created file to
“csvtest.csv” and create an array (with 4 entries) of floats. Initialize these values to {1.5,
3.25, 5.0, 7.57}. This array of floats will act like our data.

Figure 1: Here is our new declaration for our filename, notice we have changed the extension to “csv”. And
thee we can see a float array we have declared with initial values that will simulate data.

La ACES Student Ballooning Course
A15.02 – Logging Data to the SD card Part 2

LSU rev20211130 A15.02 2 of 9

3. Edit setup() so that it only begins communications with the Serial Monitor and the SD card.

Remove the code that previously wrote data to the file. Then close the file object.

4. In loop(), have the follow actions performed in order: open the SD card file to write; write
these 4 values from our data array, separated by commas, to the SD card on a new line;
flush; close the SD file; then add 0.5 to all values of the array to change the values; print
“Done!” to the Serial Monitor; and wait for 3 seconds.

a. First we need open the file using SD.open(). Then we use an if statement to verify
that the file was successfully opened, if there was an error it will skip over the
portion of the code that does the file writes.

Next, we use a for loop to write the individual values of the of the array and their
comma separators one at a time. Notice the way this loop is written it ill have
comma at the end of the line. We then print an empty string with println() to start a
new line and call flush to ensure the write happens. We have an else statement to
give us an error message in the event of the file not correctly opening.

We then close the file and send our done message, letting us know the write is
complete.

Figure 2: The modified setup function. Notice how the setup not just initialized the SD and Serial objects are
creates out data file by opening it but does not write any data to it.

La ACES Student Ballooning Course
A15.02 – Logging Data to the SD card Part 2

LSU rev20211130 A15.02 3 of 9

b. The remaining part of the loop is simple. We use another 4 loop to add 0.5 to each
of our data numbers to simulate a changing value and then a delay to wait for 3
seconds.

5. Upload the sketch. Wait until “Done!” has printed to the Serial Monitor at least 5 times and
then remove the SD card.

6. Open the CSV file in Excel as well. It should look like Figure 5. Having the CSV format
makes looking at data and analyzing data in Excel much easier because Excel separates it
for the user. You can also open the file in a text editor and you will see the raw number and
commas. One import thing to note in the raw output you will see that all of the numbers
are rounded to decimal places, excel will automatically drop any trailing zeros.

Figure 3: Shown is how to write all the values from a length 4 array with commas separating them. The
println call after the for loop starts a new line in the file.

Figure 4: We increment all our data values and wait 3 seconds after which the loop starts over and writes our
new values to the file.

La ACES Student Ballooning Course
A15.02 – Logging Data to the SD card Part 2

LSU rev20211130 A15.02 4 of 9

The print function will default to 2 decimal places when converting the float to a series of
characters. We can change that by passing an argument after then number to print our like

shown below. This is something you will want to keep in mind when deciding how to write
your payload data. Try modifying your code to change the number of decimals for you
data.

7. We probably want to make one more modification to our program, we want to add a header
to the file that will give the titles to our columns. To do this we need to go back and modify
our setup() so we write the header line immediately after we open our file.

So if we delete our old data file, reinstall our SD card and upload our modified code we
will get a .csv that should automatically add labels to the top our columns if we open it in
excel.

Try resetting the Arduino and see what happens, you should see the data just get added to
the end of the file. This is a concern especially since if we had broken data in to several
files it would return to the first file on loss of power.

Figure 5: This is what the csv file should look like
when opened in Excel. Excel does the parsing
automatically, so the data is easy to look at and plot.

Figure 6: Forcing the printed number to be to 4 decimal places.

Figure 7: Adding a header for column labels to our data file.

La ACES Student Ballooning Course
A15.02 – Logging Data to the SD card Part 2

LSU rev20211130 A15.02 5 of 9

Activity F: Breaking up Data to multiple files

Now we want to work on a more realistic example. We are going to break have our data broken
into multiple data files. We will give each of the files a unique number identifying number. And
we will make it so that the when the Arduino power is cycled that the data will resume writing the
data to a new data file.

1. In our global variables we need to give our file name a different structure. We will name
our files with DR#.csv with the number the counting as we create new files. We will start
with a default name of “DR0.csv”/

We also need a temporary variable for that we will use for the manipulating the file name.
The actual file name needs to a char array for the SD card library. But the String type is
easier to manipulate so that’s why we use the two different variables.

We also need an integer to track the current file number.

2. We want to add 2 more columns to our data lines that allow us to uniquely identify each

data line, the file number and the data line number within the file. To accommodate that
we want to add those labels to our file header.

Figure 8: Our new data file with column headers.

Figure 9: The new global variables for creating the file names.

Figure 10: Our updated header with our 2 new ID fields. Notice
the actual data remains unchanged

La ACES Student Ballooning Course
A15.02 – Logging Data to the SD card Part 2

LSU rev20211130 A15.02 6 of 9

3. Next, we need two additional global variables we need to the maximum number of data

records per file and the current number of data records written to a file.

4. Finally, we want to move our file creation and file writing in to separate functions so that

we can just call those files. In general, it is best to break individual tasks to individual
functions for ease of use and organization.

5. Our setup() function is going to be similar except we now just want to call our new

new_file() function to actually create our new file.

6. Since we have moved our file creation and writing in to separate functions our loop() is

super simple. We just need to check if we have reached the max number of data points in
a file and create a new if so. And then actually write the data to the current file.

Figure 11: max_writes is the maximum number of data packets written to single file and num_writes is where we will keep
track of the current number of data packets that have been written to the current file.

Figure 13: The new setup() function simplified by the use of the new file function().

Figure 12: The new functions we will use for writing and creating files.

La ACES Student Ballooning Course
A15.02 – Logging Data to the SD card Part 2

LSU rev20211130 A15.02 7 of 9

We also have a small delay just to limit the number of writes that occur.

7. Our write data function is mostly similar to our old loop() function. The first addition we

need to make is that we want to write the current number. Next we want to write current
datapoint number. We use the two for loops to write the data and increase the numbers as
before. And finally we increment the number of data point in the current file.

8. We want our new_file() function to check the SD card and find the next unused file name
and use that for the new file. To do that we will use the SD.exists() function. This will
return True when the file already exists and false when it does not.

So we use a while loop that first tries the existing file name, this way on loss of power it
will try DR0.csv first. If the SD card is blank it will create that file and proceed.

Figure 13: Our loop(), again very simple because the work is being done by the two functions.

Figure 8: Our new data file with column headers. Figure 14: The function to actually write our data, notice that it is very similar to our previous loop() with a few
additions.

La ACES Student Ballooning Course
A15.02 – Logging Data to the SD card Part 2

LSU rev20211130 A15.02 8 of 9

If there are old files on SD card it will enter the loop. Each time it goes through the loop it
will increase the current filenumber (which matches the number in the filename) and
combine that number with “DR” and “.csv” to create a new file name. Then it returns to
the top of the loop and checks and see if the file already exists.

This will happen until an unused file name is found. Once that occurs it will create the file
and write the header. This function will both increment a new file after every file reaches
the max number of data points and correctly resume with the next highest available file
number after a restart.

9. We also need to reset the number of data points back to zero after every time this happens.

Activity F: Combining GPS and SD Functionality

Note: NMEA Sentences are very nice for CSV files because their information is already comma
separated. The purpose of this activity is to save NMEA sentences to an SD file.

1. If not already, jumper the Shield to the Mega to allow for Serial communication for the
GPS module. Create a new sketch called NMEA_SD.ino. Clear the SD card.

Figure 15: Here we loop through possible file names until an unused one is determined.

Figure 16: Finally we open the new file and update our data writes to 0.

La ACES Student Ballooning Course
A15.02 – Logging Data to the SD card Part 2

LSU rev20211130 A15.02 9 of 9

2. Using previous activities or sketches as a reference, set up communication with GPS and

the SD card. Have the GPS send RMC only sentences. And have it output at a 1 Hz rate.

3. Do not forget to include the necessary interrupt and GPS reading functions from the
previous activities.

4. When a new NMEA sentence is received, copy that sentence to a variable and just write it
to the SD card. Don’t forget to flush after writing. Since only a single sentence is being
sent this should write a sentence to a single file.

5. Set the program to write 20 sentences to a single file and create a new file after that. You
should be able to modify the previous

6. Upload the sketch and have it create at least 4 files before removing the SD card.Look at
the files created on the computer, it should look like Figure 17

Figure 17: Left – This is what the files on the SD card should look like. Right – This is what an individual file on the SD card
should look like when it’s opened on Excel. Again, the GPS did not have a fix for this run, so some columns are empty.

