
Using the Adafruit GPS
Library

LaACES Student Ballooning Course

LSU rev20211031 L14.03 1

Installing the Library
• Easiest way to install is using

the Arduino Library Manager
• Select Tools->Manage

Libraries
• We can also manually install

by downloading the .zip file
and unpacking the library
into the sketchbook libraries
folder

• https://github.com/adafruit/A
dafruit_GPS

• Remember we set the
Sketchbook in the preferences

• As of October 2021 most
recent version is 1.5.4

LSU rev20211031 L14.03 2

https://github.com/adafruit/Adafruit_GPS

After installation
• After installation should

show up as installed in
the library manager and
library should be listed
under the File-> Examples
and Sketch -> Include
Library menu options

• We need to have the line
#include
<Adafruit_GPS.h> at the
top of our sketch to use
the library

• Adafruit_GPS.h should be
orange if the library was
installed correctly

10/18/2021

Communicating with the
GPS

• We send and receive data
from the GPS using plain
text strings

• These strings are are sent
and received as ASCII
characters over UART at
9600 baud via the TX and
RX pins of the shield

• Baud rate can be changed,
but default is 9600

• Remember was can
switch which Arduino
pins using the
Direct/Soft-Serial Switch

10/18/2021

Data Streams

• Data received from the GPS
shield will be NMEA sentences.

• Figure 10 shows what raw GPS data
will look like in the Serial Monitor

• $GPRMC,212628.068,V,,,,,0.00,0.
00,150819,,,N*4A

• This is an example of a NMEA
sentence pulled from Figure 10

• From this data stream, we can see
it was taken on August 15, 2019 at
21:26:28 UTC. A fix was not
achieved.

LSU rev20211031 L14.03 5

Figure 10: Shown is an example of the raw output of the Adafruit Ultimate
GPS Logger Shield on the serial monitor when the Shield is switched to Direct
Connect. The GPS did not have a fix, so most data fields are blank

Input/Output Strings

Output

• NMEA Sentences
• All selected sentences

• Default GGA,GSA, RMC,
VTG sentences on

• Automatically at set
rate

• Default every 1 second

• Will also send response
string to any
commands send

Input

• Commands take the form of
preformatted text strings
similar to NMEA

• Commands are called PMTK
• MediaTek Protocol named

after the GPS manufacturer

• Full Command list reference
• https://laspace.lsu.edu/laaces/wp-

content/uploads/2021/10/PMTK_Pa
cket_User_Manual.pdf

10/18/2021

https://laspace.lsu.edu/laaces/wp-content/uploads/2021/10/PMTK_Packet_User_Manual.pdf

GPS Object
• We use the GPS in programming

by declaring a variable of the
Adafruit_GPS type and we need
to tell it which serial port the
GPS is connected to

• Here GPS is the name of our
variable

• The line above tells the compiler
that we want Serial1 every place
that put GPSSerial

• The & just tells that we want to
send the location in memory of
the Serial object instead of the
actual Serial object

• The way the GPS library is written
we send the Serial this way

10/18/2021

GPS Functions
• Once we have created the GPS object we call functions of it

to do operations
• GPS.sendCommand() – sends the string inside the

parenthesis to the GPS
• GPS.read() – reads a character off of the GPS serial, returns

it and copies it to the current NMEA sentence being built
• GPS.lastNMEA() – returns the last complete NMEA received
• GPS.newNMEAreceived() – returns true or false if a new

(since last time lastNMEA() was used) complete NMEA is
available

• GPS.parse() – breaks apart the NMEA we give it inside the
parenthesis and updates all of the individual GPS variables

10/18/2021

GPS Data Flow
1. GPS outputs a characters to the Arduino Serial, all

sentences are output with no pause (only time
required to send by the baudrate)

2. Since we are connected to a Hardware Serial,
Arduino Automatically copies the characters into the
buffer for that serial port
• This has space for 64 characters. If more are sent before they

are read old characters will be overwritten
3. We call GPS.read(), this returns the next character

out of the buffer and add it to the end “current
NMEA” being built, if the character read is a newline
(indicating the end of a sentence) 3 things happen:
1. Copies “current NMEA into lastNMEA (overwriting the old

one)
2. Sets newNMEAreceived to be true
3. Starts a new “current NMEA”

10/18/2021

Reading the GPS
• GPS send data to a Serial buffer. This buffer needs to be read

manually. There are two ways – polling and interrupts.
Interrupts are the proper way.

• Polling
• Whenever we get to certain point in the program we check to see if

there are characters to read
• If program gets busy can miss characters

• Interrupt
• When a specific signal is received, the Arduino pauses what it is

current doing and goes and reads the serial buffer. Otherwise, it
keeps on doing other things.

• Signal could be a timer, a signal on a pin, etc.

LSU rev20211031 L14.03 10

Interrupt Example
• Figure 9 is the code used

to interrupt and read the
GPS serial buffer

• Timer0 is an internal
timer used for millis()

• This interrupt checks the
serial buffer every
millisecond regardless of
what else the Arduino is
doing

• This ensure we don’t miss
a character

LSU rev20211031 L14.03 11

Figure 9: The top function simply reads a character from the GPS serial buffer. The second function uses Timer0
(an internal timer on the Mega), which is used to increment the millis() call. This function says to interrupt
between the millis() increments (so as not to interfere with it). This will result in the Mega reading a character
from the GPS serial buffer once a millisecond.

PMTK Comands
Command Structure: String of characters similar to
NMEA sentences

$PMTK###,<Command Data>*CS<CR><LF>
1. $ - Indicates Start of Command String
2. ‘PMTK’ – Character string indicating MediaTek Packet
3. ‘###’ – 3 Digit character string of numbers indicating

what the command is
4. <Command Data> - the actual command usually

comma separated series of numbers
5. *CS – Character representation in hexidecimal of the

checksum
6. <CR><LF> - Carriage return and line feed

10/18/2021

Sending Commands
• Using GPS.sendCommand() we can send a string of

characters that the GPS will treat as command
• We could send the entire string manually:

• GPS.sendCommand(“$PMTK314,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0*29”); This will send turn off all NMEA sentences
except GLL

• The Library defines constants for most of the useful
command strings so we do not have to figure out the
entire string:

• GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_GLLONLY);
This will accomplish the same thing as above

• After sending a command the GPS will respond with an
acknowledge, this will be between the automatic
NMEA sentences

10/18/2021

Setting Balloon Mode
• Some GPS shields have had their altitude lockup at

~10km.
• This might be due to some units being set a

navigation mode that limits the altitude to 10km
• To set the unit to “Balloon Mode” be sure to

include the following line in your setup:
• GPS.sendCommand(“$PMTK886,3*2B”);
• The Adafruit documentation does not discuss this but we think this may be

the cause
• We found a more recent version of the PMTK command list that includes

this
• Remember that the GPS will return to default on power loss

10/18/2021

Parsing
• By calling GPS.Parse() the GPS library will break down the

NMEA sentence into the individual data pieces and update
internal variables that we can then read the values of

• We do need to pass the NMEA to the Parse() function for example
like -> GPS.Parse(GPS.LastNMEA());

• For example, after we a sentence that contained an altitude
reading 300.2 meters we can call GPS.altitude and we will
get 300.2

• It is important to remember that these values only get
updated when we call Parse on a NMEA sentence that has
those variables.

• For example, if we have only called Parse on GGA sentences (which
do not include the year) and we call GPS.year we will get the default
year value

• We also need a fix to get an accurate value

LSU rev20211031 L14.03 15

10/18/2021

GPS Command - Type Returns

GPS.latitude – float Latitude (Degrees and Minutes
DDMM.MMMM)

GPS.longitude – float Latitude (Degrees and Minutes
DDMM.MMMM)

GPS.latitudeDegrees – float Latitude (Decimal Degrees)

GPS.longitudeDegrees – float Longitude (Decimal Degrees)

GPS.speed – float Speed over Ground in Knots

GPS.altitude – float Height in meters above MSL

GPS.year – int Year

GPS.month – int Month

GPS.day – int Day of the Month

GPS.hour – int Hour

GPS.minute – int Minute

GPS.seconds - int Second

GPS.satellites – int Number of Satellites Locked

GPS.fix – bool Have a fix T/F

	Using the Adafruit GPS Library
	Installing the Library
	After installation
	Communicating with the GPS
	 Data Streams
	Input/Output Strings
	GPS Object
	GPS Functions
	GPS Data Flow
	Reading the GPS
	Interrupt Example
	PMTK Comands
	Sending Commands
	Setting Balloon Mode
	 Parsing
	Slide Number 16

