
LSU rev20211031 1

Lecture 11.01

Serial Communication Protocols

LSU rev20211031 2

Serial Interface

•Asynchronous serial can be implemented with data lines only.
–Each device generates its own clock (Baud Rate Generator).
–Handshaking lines can be used to signal status of devices.

•Synchronous serial interfaces will have a separate Clock line.
–Clock is generated by a Master device.

•One bit is transferred for each clock cycle.

LSU rev20211031 3

Parallel Interface

•Data lines may be unidirectional or bi-directional.
•Width of data bus is usually byte-wide (8 data bits).
•A full byte of data is transferred on each R/W clock cycle.
•Chip Select (CS) allows multiple devices to share bus.

Serial I/O on the
Arduino Mega

• Communications can be either via “Hardware” or
“Software”

• Hardware means there is dedicated circuitry in the
microcontroller for handling signal

• Software means the software must manually read and
manipulate the pins

• Because of this Software is significantly slower Hardware,
but Software can usually work on any set of pins

• Base Arduino Libraries will use the Hardware pins

LSU rev20211031 4

Hardware Serial
• Mega Supports Hardware UART, SPI, I2C

protocols on certain pins
• This means these pins are connected to hardware

triggers (called interrupts) and memory (buffers)
that can automatically receive the data

• This means we don’t need to be actively
“listening” all the time to receive this data

• But the storage space is limited so if data is not
copied into memory quickly (compared to speed
its being sent) data can be overwritten and lost

LSU rev20211031 5

LSU rev20211031 6

Synchronous and Asynchronous Serial
Communication

•Synchronous means the devices involved use the same clock-signal
when communicating, while asynchronous means the devices use
their own individual clocks at set rate (Baud Rate).
•Pins 0,1 & 14-19 use a Universal Asynchronous Receiver/
Transmitter (UART) for asynchronous communication.
•These are the Serial software objects in Arduino IDE
•No two clocks are perfectly matched, so asynchronous
communication is slower because extra data must be sent periodically
to ensure both devices are in sync.

LSU rev20211031 7

Asynchronous
Serial Communication

Serial communication usually involves sending or receiving
“characters” using the ASCII code. For example, the character “S” is
represented by the binary number “01010011” or 0x53 in
hexadecimal.

An asynchronous transmission of “S” begins with a start bit,
followed by 8 data bits and ending with a stop bit. There are
numerous options for number data bits, speed and an optional parity
bit.

Serial Functions for the Arduino Mega

LSU rev20211031 8

The Arduino website has excellent explanations of how these functions
work and a plethora of examples of how to use them.

LSU rev20211031 9

The Arduino Mega has four hardware serial ports
• Serial1 on pins 19 (RX) and 18 (TX)
• Serial2 on pins 17 (RX) and 16 (TX)
• Serial3 on pins 15 (RX) and 14 (TX)

To use these pins to communicate with your personal
computer, you will need an additional USB-to-serial
adaptor, as they are not connected to the Mega’s USB-to-
serial adaptor.

Arduino Mega Serial Ports

LSU rev20211031 10

Synchronous Serial I/O

Synchronous serial I/O uses a separate line for a CLOCK signal. The
synchronous serial clock, data lines, and Arduino all use TTL logic
levels, so no level converters or line drivers/receivers are required.

There are several protocols in use. Some use a bi-directional data line
while others use separate Data-In and Data-Out lines. The Master
generates the clock and initiates and controls data transfer.

LSU rev20211031 11

The I2C Bus

•Inter-Integrated-Circuit or I2C (pronounced I-too-see or I-squared-see)
is a synchronous serial protocol that uses a bi-directional data line and
supports multiple slave devices controlled by a I2C bus master.

•Defined by Phillips Semiconductor and became an industry standard.

•The clock line is called SCL, the a bidirectional data line SDA

I2C Addresses
• The I2C bus master generates SCL and initiates communication with

one of the slave devices. Each device has a unique address for device
selection.

• Each slave device has an 7 bit address that uniquely identifies it.

• Some addresses are “hard-wired” into the chip design and one or more
pins on the device. These pins can be wired High or Low to select an
address that doesn’t conflict with other devices on the I2C bus. Others
maybe set via software

• Pull-up resistors are required on both the clock and data lines. Some
chips may have internal pull-up resistors on specific pin. Arduino
Mega has these

LSU rev20211031 12

LSU rev20211031 13

•A specific sequence signal the beginning and end of the transmission

•A START sequence begins a bus transmission by transitioning SDA
from High to Low while SCL is High.

•A STOP sequence ends a transmission. The Stop sequence occurs
when the master brings SDA from Low to High while SCL is High.

I2C START and STOP

I2C Reads and Writes
• There are 2 basic types of communications a read

and a write
• In a read the Master is requests data from the

slave, the slave then responds with data bytes
• In a write the Master sends data bytes after the

address which the are then interpreted by the slave
device

• In both cases there can be multiple data bytes
• All transmissions are grouped into individual

bytes

LSU rev20211031 14

LSU rev20211031 15

•A typical I2C bus sequence for writing to a slave device:
•Send a START sequence
•Send the I2C device address with the R/W Low (for Write)
•Send the data byte
•Optionally send additional data bytes (after repeating START)
•Send the STOP sequence after all data bytes have been sent

•The Slave responds by setting the ACK bit (Acknowledge) after every
byte.

I2C Write Sequence

LSU rev20211031 16

•Reading an I2C Slave device usually begins by writing to it. You must
tell the chip which internal register you want to read.

•I2C Read Sequence
•Send the START condition
•Send the device address with R/W held Low (for a Write)
•Send the number of the register you want to read
•Send a repeated START condition
•Send the device address with R/W set High (for a Read)
•Read the data byte from the slave
•Send the STOP sequence

I2C Read Sequence

LSU rev20211031 17

I2C Read example using device address 1100000 and
reading register number 1.

LSU rev20211031 18

I2C Programming on the
Arduino Mega

The Wire library is used to communicate to devices
using the I2C bus. The functions available are:

The Arduino website has excellent explanations of how these functions
work and a plethora of examples of how to use them.

SPI Protocol

• Developed By Motorola
• Less standardized that I2C, varies device by

device
• 4 Clock Modes

– Clock can idle high or low
– Can trigger on rising or falling edge

• Devices are not fixed in individual bytes(ex. 13
bits long) but Arduino library reads an transmits in
bytes so bitwise operation will be required
(shifting and combining bytes)

LSU rev20211031 19

SPI Pins

• Master Controlled CLK
line to synchronize signal

• 2 Unidirectional Data,
MISO and MOSI
– Can simultaneously

transmit and receive
• Each device requires a

separate Chips Select (CS)
pin, Master sets low to
activate the device

LSU rev20211031 20

Master

Device 1

Device 2

MOSI

MI SO

CLK

CS1

CS0

CS1CS0

Level Shifting

Protocols can operate at different logic levels. For example, the
Arduino Mega digital pins communicates with +5V, while the
Raspberry Pi communicates with +3.3V. It is possible for a
Raspberry Pi to communicate with a Mega through level shifting.

Level Shifting is the conversion of logic signals from one voltage
level to another. It converts the “HIGH” voltage level of the input
to a different voltage. In the example above, a level shifter would
change the 3.3V logic to 5V logic or vice versa.

Level shifters may bidirectional or unidirectional and may work at
different voltage levels and frequencies so be sure to check the
datasheet to find on that works with your application.
LSU rev20211031 21

	Lecture 11.01��Serial Communication Protocols
	Serial Interface
	Parallel Interface
	Serial I/O on the�Arduino Mega
	Hardware Serial
	Synchronous and Asynchronous Serial Communication
	Asynchronous �Serial Communication
	Serial Functions for the Arduino Mega
	Slide Number 9
	Slide Number 10
	Slide Number 11
	I2C Addresses
	Slide Number 13
	I2C Reads and Writes
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	SPI Protocol
	SPI Pins
	Level Shifting

