Errors and Uncertainty Part I

Error In Scientific Measurements

- When we discuss error in a scientific, we are making a statement about how confident we are the true value of a quantity is close to our reported value (our best guess)
- It is quantitative numerical statement
- I think there's 95% that tree is between 10 and 12 ft . and my best guess is 11 ft .
- Every measured quantity has some uncertainty to it
- It is not incorrect measurement or human error, if you had evidence that a measurement was not correctly done why would you use it

Two Types of Error

Random (Statistical)

- Random fluctuation around a true or average value
- Assumed to follow some kind statistical distribution
- Because of that you can make mathematical calculations
- Expect the errors or average out over many measurements
- Examples: electrical noise, mechanical gage reading parallax, radioactive decay, ...

Systematic

- NOT Random
- Will not be reduced with increased measurements
- No "correct" mathematical treatment
- Examples: incorrectly calibrated measurement device, limits in measurement resolution

Assessing Random Error

- We can measure the random error by looking at the standard deviation, the spread in repeated measurements
- You can't tell anything from single measurement
- The Standard Deviation tells you how much spread between individual measurements
- The standard deviation of the mean tells you the error when you average several measurements together
- (Sample) Standard Deviation (Error in a SINGLE
MEASUREMENT)

$$
\sigma_{s}=\sqrt{\frac{\Sigma\left(x_{i}-X\right)^{2}}{N-1}}
$$

- Standard Deviation of the Mean (Error of the Average)

$$
\sigma_{m}=\sqrt{\frac{\sigma_{s}^{2}}{N}}
$$

Assessing Systematics

- Could compare unrelated measurements or make measurements a very well know object using our measurement system (calibration)
- Weighing a standardized weight
- Manufacturers will often give a specification of accuracy in the manual for a piece of equipment
- 1% of Full Scale, 5% of measured value, 2 digits
- The smallest possible increment able to be read with the measurement device
- Scale markings, digital readout, Analog to Digital Resolution

Example Ammeters in series

- Several Multimeters placed in series to measure the same current
- 50.1, 50.2, 50.0, 49.9, 49.8, 49.7, 49.8 mA

Ammeters continued

- Source of differences
- DMM scatter is about $0.2 \mathrm{~mA}(50 \pm 0.2 \mathrm{~mA})$
- Manufacturer accuracy: 1% of full scale (2 mA)
- Each individual DMM repeatable to 0.1 mA
- The meter are consistent with each other within the specified systematic, but repeated measurement with the same meter will show same variation relative to others
- One meter will consistently read 0.2 mA compared to another
- The systematic error is large compared to the random error
- Taking the standard deviation will $\sim 0 \mathrm{~mA}$ because the random error is smaller than the scale of the meter

Other Sources of Systematic

Error

- Often the experimental setup itself can be a source of Systematic Error
- When measuring a water bath temperature where was the thermometer relative to heater/temperature probe?
- Letting the thermometer touch the glass will cause it be hotter than the SkeeterSat probe
- Was quantity measured changing? (maybe heating or cooling)
- If always read thermometer first

LsFagist eribugh to have a chậhge larger than your error?

Ballooning Course
 Minimizing Systematic Error

- Since the systematic error limits the accuracy in our measurement minimize it in our experimental setup before we begin to take measurement
- Use the smallest possible scale or highest resolution to measure the value
- Measuring a 1.5 V battery with the 2 V scale rather than 20 V
- Let the value stabilize if using a "slow" measurement or slow down the speed of the change
- Water heats/cools slower than air, a large water bath slower than a small one
- Try take the measurement in a consistent and unbiased way
- High precision pressure gages often have a mirror behind the needle, if you are looking at the needle directly straight on the needle will block its own reflection

Independent Measurements

- One important precaution is to ensure that all your repeated measurements are independent
- Independent means that the value of one measurement is not affected by any of the other measurements
- This is done to ensure that the random errors of the measurements do of each measurement have nothing to do with each other
M

For example. we can measure the wavelength above by measuring the peak to peak distance above. We can measure A to B, however then the distance B to C also depends on B so it is not independent of our first measurement. The distance from C to D is.

Fitting and Collecting Enough Data

- We want to compare our measurements with a model (A mathematical representation of the data like a line or exponential curve)
- Want to ensure that there is enough points to tell if the model is good representation (averaged measurements should be considered a single point)
- In general for you can you can always perfectly fit a curve that as the same number of points as there are constants in its equation
- Example a line has 2 constants, slope and y-intercept, and you can always connect a line between 2 points
- Because you can just perfectly fit with any arbitrary points this doesn't tell you anything meaningful about the data
- Collect many more data points than constants you plan to use for fitting
- The shape of the curve can be hard to determine if the point are too close together
- Zooming in on a curve it will look like a line
- If the point are closer than the error you will just be fitting the random errors
- Maximize the total range of measurements you can make, sometimes the behavior changes over different ranges

Course

How many datapoints to take

- More data is always better, right? Not always
- More data takes more time to collect and more time to process
- Can be limited by systematics
- Since systematic errors can not be averaged repeated measurements once σ_{m} is smaller than the systematic error, more measurements will not decrease your total error
- You can not measure a metal bar in nm with a ruler marked in mm no matter how many measurements you repeat
- What range of data do you want the fit to be valid for
- Interpolation (estimating between measured data points) is better than extrapolation (estimating below or above the range of measured values)
- Sensor behavior may change over different ranges, uncertainties in fits get larger the farther you are from measured values

Have a plan for successful experiment

- Set up your experiment to minimize your estimated systematics
- Take repeated initial measurement to estimate random error
- Estimate the number of repeated measurements you need to make
- Determine the expected type of fit (linear, quadratic, exponential) and estimate number of data points you need over what range
- Reviewing data sheets or theory of operation of the sensor
- Record your measurement tool/scale so you can determine systematic errror

