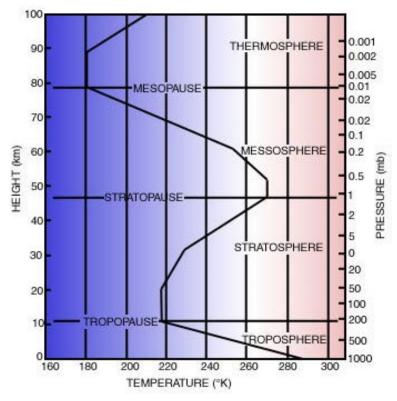


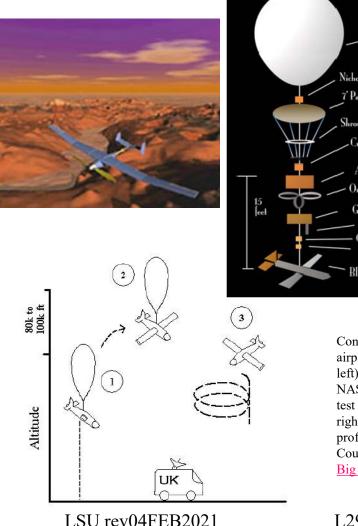
The LaACES Balloon Vehicle and Flight Profile

LSU rev04FEB2021

L29.01 Introduction to Ballooning

1



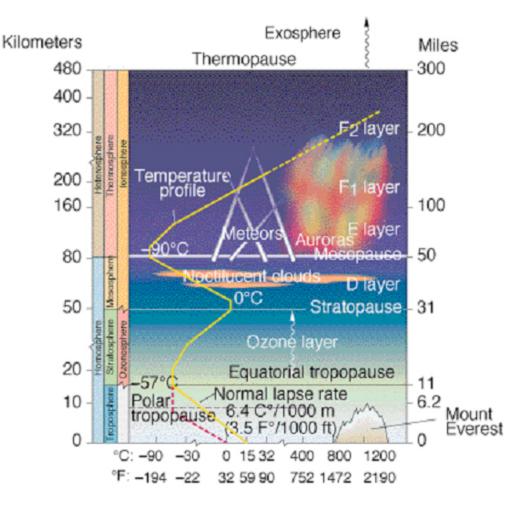

Figure showing the major layers in the Earth's atmosphere, the vertical temperature scale and pressure scale. From the <u>MET Education Office</u>

What can you do with ballooning? Access to "space"

- Balloon vehicles typically reach altitude of 30 to 35 km
- At these altitudes the vehicle is above 99% of the atmosphere
- Absorption of Infrared, UV, Xrays and Gamma rays is significantly reduced
- Primary energetic particles (cosmic ray) can be observed
- Can test hardware in a "space" environment.

What can you do with ballooning? High Altitude / Low Pressure

3000g latex envelope Nichome wire cutter 7 Parachute Shroud Ring Cutter Controller ATV Shuttle Omni-Directional ATV Antenna GPS Beacon GPS Antenna Cutter Controller Cutter BIG BLUE Glider


airplane (above left). Courtesy of NASA. Big Blue test vehicle (above right) and flight profile (left). Courtesy of <u>UK</u> <u>Big Blue</u>

- Pressure at balloon altitudes is 5 mb to 10 mb
- Very similar to the pressure at the surface of Mars
- Test vehicles that might one day flight on Mars
- Test Mars prototype dust, biological and atmosphere composition experiments

What can you do with ballooning? In-situ Measurements

- The Earth's atmosphere has a structure & composition that is a function of altitude
- The ozone layer is a famous example
- Also dust, temperature, pressure, humidity, winds and chemical composition will vary with height
- Sampling of biological and nuclear materials for national security

What can you do with ballooning? Look-Down Remote Sensing

Image from a BOREALIS High Altitude Ballooning program student built payload. Picture was take at an altitude close to 100,000 feet and shows the Earth's surface, the atmosphere and the space. Courtesy of the <u>BOREALIS</u> <u>program</u>.

- Provide aerial view of ground from low to high altitude
- Test of sensors for possible satellite missions
- Wide area surveillance for national security

What can you do with ballooning? Many other possibilities

- Cosmic Ray
 Experiments
- Ozone profile
- UV profile
- CMB observation
- Particulate sampling
- Biological sampling
- Trace gas sampling
- Wind Profiles

- Temperature Profile
- Pressure Profile
- Accelerometer/Gyro
- Weight & Power Reduction Strategies
- Telemetry & Tracking
- Attitude stabilization
- Cutdown systems
- Ground Station Testing

LSU rev04FEB2021

Components of the balloon vehicle

- Latex sounding balloon
- Parachute & cut mechanism
- Primary GPS beacon
- Primary antenna
- HD Video payload
- Student payloads
- Secondary GPS beacon
- Secondary antenna
- APRS tracking beacon
- Iridium tracking beacon

Filling the sounding balloon with helium prior to the ACES61 flight

- Parachute used for recovery
- Descent rate of about 17 fps to 20 fps with a 12 pound payload

Lift & Recovery Components

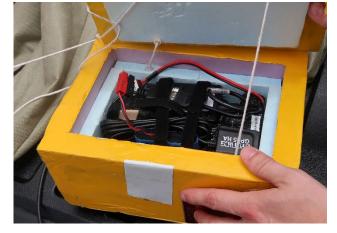
- A Kaymont 2000 gm sounding balloon is used to lift
- Ascent rate is around 1000 fpm
- Total nozzle lift is ~17 pounds
- Burst altitude is about 100,000 feet

The ACES01 parachute shrouds tangled with balloon remnants

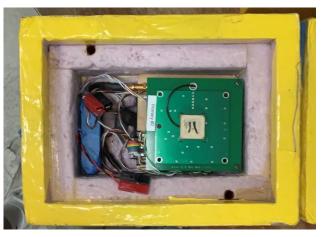
LSU rev04FEB2021

Tracking Components

- Primary & secondary GPS radio beacons used to provide real time latitude, longitude and altitude of the balloon
- Tracking required by FAA regulations
- An APRS radio beacon used to track ground location
- Iridium beacon provides tracking over the horizon



Track of the ACES01 flight during May, 2003



ACES61 Iridium Beacon

LSU rev04FEB2021

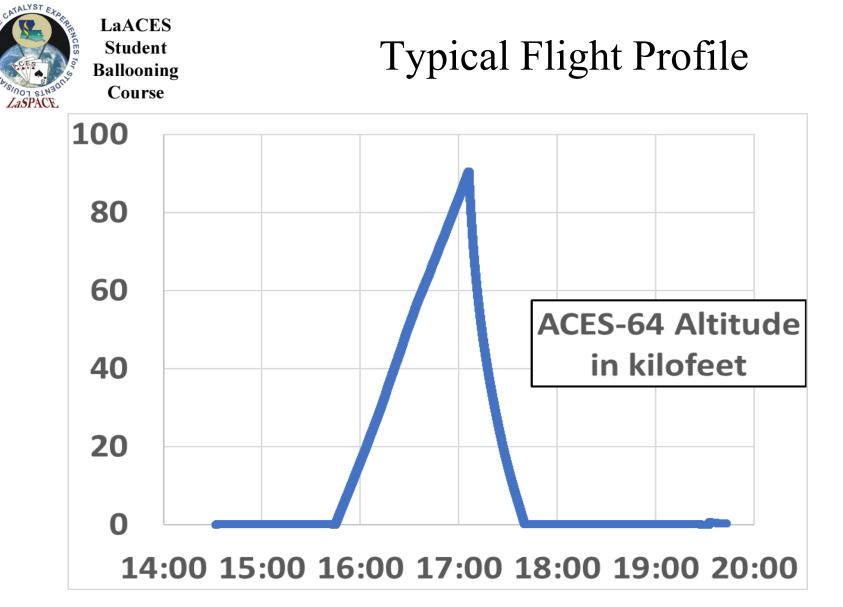
ACES61 APRS Beacon

ACES61 Primary Beacon

Vehicle Payload

- Vehicle can carry ~5.4 kg total without a FAA waiver
- Subtracting 2.5 kg for "ballooncraft" leaves about 2.5 kg for payloads.
- Support 4 to 5 payloads per flight, so each payload is limited to about 500 grams weight

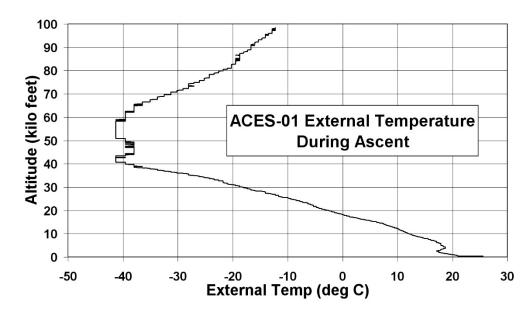
• FAA waiver is also needed if payload exceed 3 oz / inch² on any surface


The ACES01 student payloads

- Mechanical structure is polystyrene foam board, which can be easily cut, shaped, and glued
- Mechanical interface to vehicle is a pair of structural strings, separated by ~17 cm, that pass through the payload unbroken and is secured with spring clips.

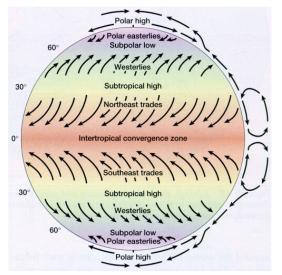
L29.01 Introduction to Ballooning

Payload mechanical interface


LSU rev04FEB2021

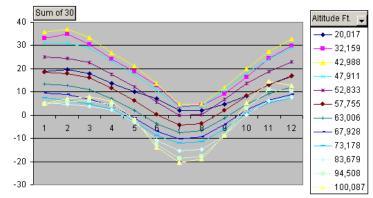
ACES-64 altitude as a function of UTC time

Expected Flight Environment



- Gets cold at the tropopause ($\sim -60^{\circ}$ C)
- Any water vapor will condense out and cause frost
- Good vacuum (< 0.02 atmosphere)
- Landing can be rough (shock, trees, rocks, dragging)
- High velocity during initial descent (~500 mph)

LSU rev04FEB2021



- Vehicle will carry payloads to ~100,000 feet
- Winds at these altitudes show marked seasonal variations
- Summer winds are from the east and from the west during winter

Global circulation. From Naumov lecture on Pressure Systems, Winds and Global Circulation LSU rev04FEB2021

High Altitude Winds

Mean wind flow as function of altitude (coded curves) and month of year (x axis) for 30 degrees latitude. Positive values are for winds from the west and negative value are for winds from the east. From <u>EOSS turn around page</u>.

- Seasonal variation is caused by a latitude shift
 in the global circulation pattern and by
 changes in the positions of the continental
 highs and lows
- Twice a year (May, September) the high altitude winds are at the slowest speed
- It is during this "turn-around" period that we schedule ACES launches


LaACES Student Ballooning Course

Balloon Vehicle Launch

Balloon cut at ~100,000 feet

LSU rev04FEB2021

Payload Return & Landing

References

- <u>http://www.met-office.gov.uk/education/training/atmosphere.html</u> The MET Education Office in the UK
- <u>http://www.engr.uky.edu/bigblue/</u> University of Kentucky Big Blue student payload
- <u>http://spacegrant.montana.edu/borealis/index.asp</u> BOREALIS High Altitude Balloon Program
- http://www.eoss.org/ Edge of Space Sciences amateur ballooning group
- <u>http://www.geog.buffalo.edu/~naumov/TA/GEO101/</u> Physical Environment Geography course lecture notes by Aleksey Naumov, SUNY-Buffalo
- <u>https://www.youtube.com/louisianaspacegrant</u> Louisiana Space Grant Youtube Channel