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Errors and Uncertainty
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L05.02



What is a Distribution

• Gives the relative chance(probability) getting a value when making 1 measurement of a 
particular quantity

– As you make repeated measurements you are pulling more possible values out of the 
distribution

• You usually make a guess about the distribution for the measurement based on previous 
measurements, often assume the Normal Distribution

• When you make a single measurement you sampling the distribution, with multiple 
samples we can start to make more accurate statements about the distribution

• Shows how you should see the measurements to be distributed over all possible values if 
you were able to repeat the measurement and infinite amount of time

• Only addresses the random error, systematic error is assumed to be small or 0
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Gaussian Distribution
• Most commonly used distribution

• Also called Normal Distribution
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• 3 constants (actually only 2) in equation

– μ is the mean, the center and peak 
of the distribution and the most 
likely value

– σ is the called variance which 
controls the width

– The height is how to get that value 
when making a measurement

– k is the normalization just scales the 
whole thing so that the sum 
(integral) is 1
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A Gaussian distribution with μ=10 and σ=3, the vertical 
lines show 1σ and 2σ from the mean. The green region 
contains about 67% of the total area and the combined 
green and blue contain 95% of the total area.



The Mean
• There are in fact 2 means we want to think about

• μ the mean of the distribution (Could be thought of as the true 
mean)
– May be called expectation value

– Simply the weighted average by probability of all possible values in the 
distribution

• X the mean of the sample (i.e. the average value you measured)

– X=  : where xi are all the individual measurements and N is the number 
of measurements

– This is what is called an estimator, we are trying to estimate some property of 
the distribution based on finite number of measurements, as N becomes large 
the estimator approaches the true value
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Standard Deviations

• Standard Deviation by itself is 
a somewhat imprecise that 
could have different meanings 
in different contexts/fields

• Because of this you want to be 
specific which one you are 
using (define the equation 
somewhere)

• Not the same as the σ used 

• 3 Standard Deviations with 3 
Different meanings 

• Population Standard Deviation
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• Standard Deviation of the Mean
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Standard Deviation 
(Population)


మ

• Note that it depends on μ (the 
true mean) which for many 
applications you do not know

• However if your 
measurements are the entire 
set of values you are interested 
in (the entire population) you 
could use this

• You are trying to estimate the 
σ of the distribution

• What if we just replace μ with 
X (sample mean)

• Doing this underestimates the 
error so we do not want to use 
it

• As N becomes very large σp

will equal σ
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Standard Deviation (Sample)
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• We can correct σp for the bias

• Because N-1<N σs will always be 
larger than σp

• As N becomes the -1 doesn’t really 
matter so for a large enough N, σp=σs

• Used when you only have a sample 
of the population or distribution 
(almost always the case)

• With 1 measurement you get 



, 

which is undefined, but that makes 
sense because you can not make any 
meaningful statement about a 
distribution based on 1 sample other 
than saying that sample is in the 
distribution

• However correcting the bias does not 
mean σ=σp it just mean you are just 
as likely overestimate as 
underestimate σ

• As N becomes very large σs will 
equal σ
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Standard Deviation of the 
Mean

• With σp,σs you are making estimating the error in 
a single measurement (estimating σ)

• σm you estimating how close to X (your sample 
mean) is to μ (the true mean of the distribution), 
the error in X

• Unlike σp,σs as N becomes very large σm will 
become zero
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Example: Standard Deviation

• Suppose we make 5 
measurements of the 
temperature a with a 
digital thermometer 
that reads out to 0.1 
Degrees

• First calculate the sum
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Example: Standard Deviation

• Suppose we make 5 
measurements of the 
temperature a with a 
digital thermometer 
that reads out to 0.1 
Degrees

• First calculate the sum

• Next calculate the 
mean
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Example: Standard Deviation

• Then you need to 
subtract the mean from 
each measurement
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Example: Standard Deviation

• Then you need to 
subtract the mean from 
each measurement

• Then square each of 
them
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Example: Standard Deviation

• Then you need to 
subtract the mean from 
each measurement

• Then square each of 
them

• Sum the squares
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Example: Standard Deviation

• Then you need to 
subtract the mean from 
each measurement

• Then square each of 
them

• Sum the squares

• Divide by N-1
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Example: Standard Deviation

• Then you need to 
subtract the mean from 
each measurement

• Then square each of 
them

• Sum the squares

• Divide by N-1

• And take the square 
root
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Example: Standard Deviation

• However you could 
most programs have a 
built in standard 
deviation function

• But be careful to use 
the correct (sample not 
population)
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Example: Standard Deviation

• However you could 
most programs have a 
built in standard 
deviation function

• But be careful to use 
the correct (sample not 
population)

• But can see gives the 
same result
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Example: Standard Deviation

• But what if we did the 
measurement with a bulb 
thermometer that could 
only has 0.5 deg 
resolution

• We get 0 for both the 
Standard Deviation and 
SD of the mean

• Does that mean no error?
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What if my Standard 
Deviation is 0(or very small)?

• Let’s say I measure the length of a metal bar with a ruler 10 times with a ruler 
marked in mm and I get 12 each time

• Calculating the σs you get 0 so I know the bar is exactly 12 mm, no uncertainty, 
down to the smallest fraction of a mm, right?

• NO! We have completely left out the other type of uncertainty, systematic

• Since the ruler is only marked in 1mm increments we would probably want to 
estimate the systematic error to be at least that large

– Maybe you could argue 0.5mm but clearly if this was a digital measurement you couldn’t go 
smaller than the last displayed digit

– You would also want to include any accuracy given by the manufacturer specifications

• Need to estimate the systematic uncertainty and add it to the random uncertainty
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Adding Errors
• Clearly the simplest solution would be to just add 

the errors together
+ 

• But we don’t really expect them both to be at a 
max at the same time so can instead add them in 
quadrature 

• This assumes independent variables and normal 
distribution
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Example: Adding Error

• Returning to our temperature 
example we can add the 
systematic and random errors

• For the bulb thermometer its 
easy, the random error we 
calculated was 0 so:

=0.5°C

• For a less trivial example 
lets look at the digital 
thermometer

= 0.34347 °C
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Propagation of Error

• If f is a function of variables (x1,x2,…)
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• This is a generalization of the addition formula

• Again assumes independent variables and normal 
distribution

• Partial Derivative treat all other variables as constants and 
take the derivative of that one variable (feel free to look 
up the derivatives)
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Example Propagation of Error

• We want to know the 
volume of a rectangular 
object with dimensions of 
10 mm x 12 mm x 5 mm

• The error for each 
measurement is dominated 
by systematic for each is 
0.5mm
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Example Propagation of Error

• V is a function of 3 variables l, w, and h
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Example Propagation of Error

• Notice each term in parenthesis has units of volume

• The volume is 600±70 mm3

• More examples available in R05.02 Propagation of Error
• https://laspace.lsu.edu/laaces/wp-

content/uploads/2020/08/R05.02_Propagation_of_Errors.pdf
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Poisson Distribution
• Used for many types of counting 

measurements like radioactive 
decay, photon counting, river 
flooding..

• k is number of occurrences, λ is the 
average number of occurences

ఒೖషഊ

!
(Probability of 

having 0 floods, 1 flood, k floods 
in the next 100 years, when on 
average have λ every 100 years)

• When λ is very large just becomes 
a normal distribution
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Poisson distributions of various λ



But why Gaussian?
• If there are other distributions, why do we usually assume 

a Gaussian Distributions

• In the large number case (big n or λ) other distributions 
become close to a Gaussian

• There is good math for doing propagation and error 
handling

• It is a good model for many physical measurements

– Can prove this is the case from a very many very small 
errors adding up from the Central Limit Theorem
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Reporting Measurements
• If I think the error in a measurement is 0.5 mm does it make sense 

to report the average as 12.003mm

• The common practice is to round the error to 1 or 2 significant digit 
and then round the corresponding measurement to that digit 

– So we would report the values as 12.0±0.5mm

• However do not round intermediate values used for calculations 
because you do not want to have rounding errors compound

• Also errors should have the same units as the measurement

• You want to be clear about how you have calculated errors and 
what you mean with your ±, show your work
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Putting it all together
• Let’s assume, we first did repeated 

temperature measurements at one 
temperature to show the random 
error is small compared to the 0.5 
error from our bulb thermometer

• From the pixel size and signal width 
in Spectrogram software we estimate 
the systematic uncertainty of to be 11 
Hz

• We decide we need to take 5 
independent frequency 
measurements at each temperature 
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Putting it all together

• We will calculate the mean of our 5 
frequencies and use that as our fitting 
point

• We then need to calculate the 
standard deviation of that mean to 
determine the random frequency 
error for that mean value

• The we need to add the systematic 
frequency error to the random to find 
the total frequency error

• Doing this gives us our first 
datapoint (1257.8±14 Hz, 95.0 
±0.5°C)
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Calculating all our data points

• Now repeat the process 
for all temperature and 
frequency measurements

• This gives us a set of x 
(frequency) and y 
(temperature) points with 
a horizontal and vertical 
error for each datapoint
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Plot the points

• Now we want to plot all of the 
points together

• Since the goal of the 
experiment is to be  able to 
read a frequency and be able to 
tell what temperature the 
thermistor is, we want T as a 
function f

• So we pick f as the x values 
and T as the y values
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Add Error Bars
• We add the error bars to our plot

• Select in this case our error is 
symmetric, so we use the same 
value for both the positive and 
negative error

• Additionally we want to select 
the option that lets use specify 
values for error and not a 
percentage, standard deviation, 
or fixed value for example

• Add both horizontal and vertical 
error bars, using the errors we 
calculated

• It may be necessary to adjust to 
point marker size or add a 
caption if the errors are small

LSU rev09242020 L05.02 33



Add a trendline

• Finally we want to add a trendline

• Clearly the data is not linear

• Ideally, we would have some theoretical basis for picking a particular fit but we can also 
try seeing what matches the data

• Also probably want to show the equation of the fit on out plot
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Finish the Plot and Draw 
Conclusions

• Don’t forget to add the axes titles, units, plot title, etc.

• If we have a good fit and correctly assessed our errors, we expect 
~2/3 of our points error bars to overlap with our fit line (Remember 
67% 1σ)

• Many less than 2/3
– Maybe not a good fit function

– Possibly underestimated errors, missed systematics

• Many more than 2/3
– Too many constants in your function

– Overestimated error, manufacturer specification often give “guaranteed to be 
this accurate” rather than a more scientific error
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