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ABSTRACT

Convenient tables and approximate formulae are presented for confidence limits based on Poisson and
binomial statistics. Poisson statistics apply when event rates are calculated from small numbers of observed
events, and binomial statistics apply when ratios of two different event types are calculated from small
numbers of observed events. The limits in the tables are given for all confidence levels commonly used in

astrophysics.
Subject heading: numerical methods

I. INTRODUCTION

In many areas of astrophysics it occasionally happens that
only a small number of events of interest are detected during
an observation. Examples range from the number of super-
novae seen in a given period of time from a cluster of galaxies
to the number of gamma rays detected during a source obser-
vation. If the goal is to determine quantities such as the event
rate or the ratio of different event types, then the best approach
is to repeat the measurement with a longer integration time or
a larger collection factor in order to obtain enough events for
an accurate measurement. In some cases, for one reason or
another, this is not possible or practical, and one is forced to
make the best use of the data in hand. Results are then typi-
cally quoted as upper limits at a specified confidence level or as
a measured value with error bars containing a specified con-
fidence interval. Conventionally, error bars plotted in figures
are 84.13% confidence upper and lower limits containing a
68.27% confidence interval.

The calculation of limits for small numbers of counts is
based on standard equations derived from Poisson and bino-
mial statistics. Although the equations are straightforward,
using them directly is cumbersome and involves interpolating
in tables and executing several mathematical operations.
Tables of limits for a few confidence levels have been published
(Pearson and Hartley 1966; Beyer 1966), but not all levels
commonly used in astrophysics are included. Also, I have
found that the tables most often referenced (Beyer 1966) have
inaccuracies in the last decimal place. Another shortcoming in
this subject is that approximate formulae for quick estimation
or for use in computer programs are not available. The
purpose of this paper is to present tables of Poisson and bino-
mial limits for all confidence levels commonly used in astro-
physics and to derive easy-to-use approximate formulae for
calculating the limits.

II. CONFIDENCE LIMITS FOR POISSON STATISTICS

a) Definitions and Numerical Solutions

We consider the case where n events are detected in a given
observation. Then, based on Poisson statistics, the upper limit,
A4, and lower limit, 4, of confidence level CL are defined by
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(see, e.g., Pearson and Hartley 1966; Beyer 1966). The lower
limit for n = 0 is 4, = 0.0. Single-sided confidence limits are
defined in equations (1) and (2) and will be used throughout
this paper. Double-sided intervals of level CL’ can be obtained
by substituting (1 + CL')/2 for CL in the equations. For
instance, if 4, and A, are each 95% single-sided limits, then the
double-sided interval 4, to 4, has a confidence of 90%.

In the Appendix it is shown that equations (1) and (2) are
reasonable definitions of Poisson confidence limits. In particu-
lar, it is illustrated that if a large number of observers measure
a real physical rate, then at least 100 x CL% of them will
assign upper limits based on their measurements that are
greater than the real rate and at least 100 x CL% will assign
lower limits that are less than the real rate, for all rates. It is
also shown that the upper limits are the smallest they can be
and still satisfy this condition and that the lower limits the
largest they can be. The limits in equations (1) and (2) therefore
optimally satisfy the definition of confidence limits (see, e.g.,
Cramér 1945). ‘

It is not possible to obtain exact algebraic expressions for 4,
and /1, from equations (1) and (2). However, as shown in the
next section, approximate expressions can be found that are
good to a few percent. Also, for any values of n and CL, the
limits can be numerically determined to any desired accuracy.
Listed in Tables 1 and 2 are exact values for 4, and 4, at several
confidence levels for n = 0-50, determined using an iterative
numerical technique (Newton’s method) to solve equations (1)
and (2). The confidence levels that were chosen are the obvious
0.90, 0.95, 0.99, and 0.999, as well as levels corresponding to 1,
2, and 3 o limits for Gaussian statistics, namely 0.8413, 0.9772,
and 0.9987. Also, to allow common double-sided intervals to
be determined, single-sided levels of 0.975 (double-sided 0.95),
0.995 (d-s 0.99), and 0.9995 (d-s 0.999) are included.

As an example of the use of Tables 1 and 2, consider an
observation where four events are detected in 10 s. The 99%
confidence upper limit to the rate is then 1.160 s~!, and the
99% confidence lower limit is 0.082 s~ !. The 99% confidence
double-sided interval (CL = 0.995 column) is 0.067-1.259 s~ .
The measured value with error bars corresponding to 1 ¢

Gaussian errorsis 0.40+3:32571,
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TABLE 1
Po1ssOoN SINGLE-SIDED UPPER LIMITS

CONFIDENCE LEVEL

n 0.8413* 0.90 0.95 0.975 0.9772* 0.99 0.995 0.9987* 0.999 0.9995
[ 1.841 2.303 2.996 3.689 3.783 4.605 5.298 6.608 6.908 7.601
) S 3.300 3.890 4.744 5.572 5.683 6.638 7.430 8.900 9.233 9.999
2o 4.638 5.322 6.296 7.225 7.348 8.406 9.274 10.87 11.23 12.05
3o 5918 6.681 7.754 8.767 8.902 10.05 10.98 12.68 13.06 13.93
4o 7.163 7.994 9.154 10.24 10.39 11.60 12.59 14.39 14.79 15.71
So 8.382 9.275 10.51 11.67 11.82 13.11 14.15 16.03 16.45 17.41
6. 9.584 10.53 11.84 13.06 13.22 14.57 15.66 17.62 18.06 19.05
Teoeiinnn, 10.77 11.77 13.15 14.42 14.59 16.00 17.13 19.17 19.63 20.65
8. 11.95 12.99 14.43 15.76 15.94 17.40 18.58 20.69 21.16 2222
9l 13.11 14.21 15.71 17.08 17.27 18.78 20.00 22.18 22.66 23.75

10.......... 14.27 15.41 16.96 18.39 18.58 20.14 21.40 23.64 24.13 25.26
| 15.42 16.60 1821 19.68 19.87 21.49 2278 25.08 25.59 26.74
120, 16.56 17.78 19.44 20.96 21.16 2282 24.14 26.51 27.03 28.20
130 17.70 18.96 20.67 2223 2243 24.14 25.50 2791 28.45 29.65
14.......... 18.83 20.13 21.89 23.49 23.70 2545 26.84 29.31 29.85 31.08
15 19.96 21.29 23.10 24.74 2495 26.74 28.16 30.69 31.24 32.50
16.......... 21.08 2245 24.30 25.98 26.20 28.03 29.48 32.06 32.62 33.90
17.......... 2220 23.61 25.50 2722 27.44 29.31 30.79 3342 33.99 35.29
18 23.32 24.76 26.69 28.45 28.68 30.58 32.09 34.76 35.35 36.68
9.0 24.44 25.90 27.88 29.67 29.90 31.85 3338 36.10 36.70 38.05
20, 25.55 27.05 29.06 30.89 31.13 33.10 34.67 37.44 38.04 39.41
21 26.66 28.18 30.24 32.10 3234 3435 3595 38.76 39.37 40.76
22 .. 27.76 29.32 3141 3331 33.55 35.60 37.22 40.07 40.70 42.11
23 28.87 30.45 32.59 34.51 34.76 36.84 38.48 41.38 42.02 43.45
24.......... 29.97 31.58 33.75 3571 35.96 38.08 39.74 42.69 43.33 44.78
25, 31.07 3271 34.92 36.90 37.16 39.31 41.00 43.98 44.64 46.11
26 32.16 33.84 36.08 38.10 38.36 40.53 42.25 45.28 45.94 47.42
27 i 33.26 34.96 3723 39.28 39.55 41.76 43.50 46.56 4723 48.74
28 34.35 36.08 38.39 40.47 40.74 4298 4474 47.84 48.52 50.04
29, 3545 37.20 39.54 41.65 4192 44.19 45.98 49.12 49.80 51.35
30.......... 36.54 3832 40.69 42.83 43.10 45.40 4721 50.39 51.08 52.64
31 37.63 39.43 41.84 44.00 44.28 46.61 48.44 51.66 52.36 53.94
2. 38.72 40.54 42.98 45.17 45.46 47.81 49.67 52.92 53.63 55.23
33 39.80 41.65 44.13 46.34 46.63 49.01 50.89 54.18 54.90 56.51
4. 40.89 42.76 45.27 47.51 47.80 50.21 52.11 5543 56.16 57.79
35, 4197 43.87 46.40 48.68 48.97 51.41 5332 56.69 5742 59.06
36.......... 43.06 44.98 47.54 49.84 50.14 52.60 54.54 5793 58.67 60.34
37 44.14 46.08 48.68 51.00 51.30 53.79 55.75 59.18 59.93 61.60
38 45.22 47.19 49.81 52.16 52.46 54.98 56.96 60.42 61.17 62.87
39, 46.30 48.29 50.94 53.31 53.62 56.16 58.16 61.66 62.42 64.13
40.......... 47.38 49.39 52.07 54.47 54.78 57.35 59.36 62.89 63.66 65.39
41, 48.46 50.49 53.20 55.62 5593 58.53 60.56 64.13 64.90 66.64
42 ... 49.53 51.59 54.32 56.77 57.09 59.711 61.76 65.36 66.14 67.90
43 50.61 52.69 55.45 5792 58.24 60.88 62.96 66.58 67.37 69.14
44.......... 51.68 53.78 56.57 59.07 59.39 62.06 64.15 67.81 68.60 70.39
45.. ... 52.76 54.88 57.69 60.21 60.54 63.23 65.34 69.03 69.83 71.63
46.......... 53.83 5597 58.82 61.36 61.69 64.40 66.53 70.25 71.06 72.88
47 54.90 57.07 59.94 62.50 62.83 65.57 67.72 71.47 72.28 74.11
48.......... 55.98 58.16 61.05 63.64 63.97 66.74 68.90 72.68 73.51 75.35
49 57.05 59.25 62.17 64.78 65.12 67.90 70.08 73.90 74.72 76.58
S0l 58.12 60.34 63.29 65.92 66.26 69.07 71.27 75.11 75.94 77.81
60.......... 68.79 71.20 74.39 7723 71.60 80.62 82.99 87.11 88.01 90.01
70.......... 79.41 81.99 85.40 88.44 88.83 92.06 94.58 98.96 99.91 102.0
80.......... 89.98 92.73 96.35 99.57 99.98 103.4 106.1 110.7 1117 1139
9.l 100.5 1034 107.2 110.6 111.1 114.7 1174 1223 1233 125.7
100.......... 111.0 114.1 118.1 121.6 1221 125.8 128.8 133.8 1349 1374

# Corresponding to Gaussian statistics 1 ¢ = 0.8413, 2 ¢ = 0.9772, and 3 ¢ = 0.9987.
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TABLE 2
Po1ssON SINGLE-SIDED LOWER LIMITS

CONFIDENCE LEVEL

n 0.8413 0.90 0.95 0.975 0.9772 0.99 0.995 0.9987 0.999 0.9995
0.173 0.105 5.13-2* 2.53-2 230-2 1.01-2 5.01-3 1.35-3 1.00—-3 5.00—-4
0.708 0.532 0.355 0.242 0.230 0.149 0.103 529-2 4.54—-2 3.20-2
1.367 1.102 0.818 0.619 0.569 0.436 0.338 0.212 0.191 0.150
2.086 1.745 1.366 1.090 1.058 0.823 0.672 0.465 0.429 0.355
2.840 2433 1.970 1.623 1.583 1.279 1.078 0.792 0.739 0.632
3.620 3.152 2.613 2.202 2.153 1.785 1.537 1.175 1.107 0.967
4.419 3.895 3.285 2.814 2.758 2.330 2.037 1.603 1.520 1.348
5.232 4.656 3.981 3.454 3.391 2.906 2.571 2.068 1.971 1.768
6.057 5.432 4.695 4.115 4.046 3.507 3.132 2.563 2.452 2.220
6.891 6.221 5.425 4.795 4.719 4.130 3.717 3.084 2.961 2.699
7.734 7.021 6.169 5.491 5.409 4.771 4.321 3.628 3.491 3.202
8.585 7.829 6.924 6.201 6.113 5.428 4.943 4.191 4.042 3.726
9.441 8.646 7.690 6.922 6.828 6.099 5.580 4.772 4.611 4.269
10.30 9.470 8.464 7.654 7.555 6.782 6.231 5.367 5.195 4.828
11.17 10.30 9.246 8.395 8.291 7471 6.893 5977 5.794 5.402
12.04 11.14 10.04 9.145 9.036 8.181 7.567 6.599 6.405 5.990
12.92 11.98 10.83 9.903 9.789 8.895 8.251 7.233 7.028 6.590
13.80 12.82 11.63 10.67 10.55 9.616 8.943 7.871 7.662 7.201
14.68 13.67 12.44 11.44 11.32 10.35 9.644 8.530 8.306 7.822
15.57 14.53 13.25 12.22 12.09 11.08 10.35 9.193 8.958 8.453
16.45 15.38 14.07 13.00 12.87 11.83 11.07 9.863 9.619 9.093
17.35 16.24 14.89 13.79 13.65 12.57 11.79 10.54 10.29 9.741
18.24 17.11 15.72 14.58 14.44 13.33 12.52 11.23 10.96 10.40
19.14 17.97 16.55 15.38 15.23 14.09 13.26 11.92 11.65 11.06
20.03 18.84 17.38 16.18 16.03 14.85 14.00 12.62 12.34 11.73
20.93 19.72 18.22 16.98 16.83 15.62 14.74 13.32 13.03 12.41
21.84 20.59 19.06 17.79 17.64 16.40 15.49 14.03 13.73 13.09
22.74 2147 19.90 18.61 18.45 17.17 16.25 14.75 14.44 13.78
23.65 2235 20.75 19.42 19.26 17.96 17.00 15.47 15.15 14.47
24.55 2323 21.59 20.24 20.07 18.74 17.77 16.19 15.87 15.17
25.46 24.11 2244 21.06 20.89 19.53 18.53 16.92 16.59 15.87
26.37 25.00 23.30 21.89 21.71 20.32 19.30 17.65 17.32 16.58
2728 25.89 24.15 22.72 22.54 21.12 20.08 18.39 18.05 17.30
28.20 26.77 25.01 23.55 23.36 21.92 20.86 19.13 18.78 18.01
29.11 27.66 25.87 24.38 24.19 2272 21.64 19.88 19.52 18.73
30.03 28.56 26.73 25.21 25.03 23.53 2242 20.63 20.26 19.46
30.94 29.45 27.59 26.05 25.86 2433 23.21 21.38 21.00 20.19
31.86 30.34 28.46 26.89 26.70 25.14 24.00 22.14 21.75 20.92
32.78 31.24 29.33 27.73 27.53 25.96 24.79 22.89 22.51 21.66
33.70 32.14 30.20 28.58 28.38 26.77 25.59 23.66 23.26 22.40
34.62 33.04 31.07 29.42 29.22 217.59 26.38 24.42 24.02 23.14
35.55 33.94 31.94 30.27 30.06 28.41 27.18 25.19 24.78 23.88
36.47 34.84 3281 3112 3091 29.23 27.99 25.96 25.54 24.63
37.39 35.74 33.69 31.97 31.76 30.05 28.79 26.73 26.31 25.38
38.32 36.65 34.56 3282 3261 30.88 29.60 27.51 27.08 26.14
46.......... 39.24 37.55 35.44 33.68 33.46 31.70 30.41 28.29 27.85 26.89
47, 40.17 38.46 36.32 34.53 34.31 32.53 31.22 29.07 28.62 27.65
48.......... 41.10 39.36 37.20 3539 3517 33.36 32.03 29.85 29.40 28.42
49.......... 42.02 40.27 38.08 36.25 36.02 34.20 32.85 30.63 30.18 29.18
S50.......... 42.95 41.18 38.96 37.11 36.88 35.03 33.66 31.42 30.96 29.95
60.......... 52.28 50.31 47.85 45.79 45.53 43.46 41.93 39.40 38.88 37.73
70.......... 61.65 59.51 56.83 54.57 54.29 52.02 50.33 47.54 46.96 45.70
80.......... 71.07 68.77 65.88 63.44 63.13 60.67 58.84 55.81 55.18 53.80
90.......... 80.53 78.08 74.98 7237 72.04 69.41 67.44 64.18 63.51 62.02
100.......... 90.02 87.42 84.14 81.36 81.02 78.22 76.12 72.65 71.92 70.33

2 5.13—2 means 5.13 x 1072
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b) Approximate Algebraic Expressions

The standard method for determining Poisson confidence
limits makes use of the relation between the Poisson sum and
the y? probability function

n—1 ixe—).
x!

=1—P(’|v) 3)

x=0
(see, e.g., Abramowitz and Stegun 1965), where P(32|v) is the >
probability for v degrees of freedom with 2 = 24 and v = 2n.
From equation (3), the Poisson upper and lower limits of con-
fidence CL defined by equations (1) and (2) are related to the y2
probability function by

P(4,12n +2)=CL 4
P(2/,|2n) =1 —CL. )

Thus, 4, and 4, can be determined using tables of percentage
points of the y? distribution. This method is straightforward
but is definitely less convenient than tables of the limits them-
selves. Also, since no y? table covers all confidence levels com-
monly used, interpolations and extrapolations are often
required. Equations (4) and (5) are, however, good starting
points for developing approximate algebraic expressions for
the limits.
i) Upper Limits

Several approximate inverse relations giving x* in terms of
P(y*|v) are listed by Abramowitz and Stegun (1965). In this
section, these relations will be used to obtain several approx-
imate expressions for 4,. Their accuracy will then be compared
and a recommended numerical procedure given. All of the
equations in Abramowitz and Stegun make use of the variable
y. defined as the Gaussian integral value with the same prob-
ability as P(x?|v); ie., if P(y2|v) = a, then y, is such that
G(y,) = 2m)~ Y2 e~*2dt = a.In our final equations we use
the variable S = |y,|, which is the equivalent Gaussian number
of ¢ corresponding to the confidence level. Values of S for the
common confidence levels are listed in Table 3, along with
other data pertaining to the next section.

The first approximate relation is

ngé(ya"'\/zv_lz, (6)

which, combined with equation (4), gives

2
luzn+S\/n+§+S+3. (7

4 4

Another approximate relation is

2 2\3
201 -= il I 8)
2 ( 9v+y.,/9v)

which gives

Jo~(n+ 1)[1

1 S 3
o+ D 3 n+l:|‘ ©

A final approximate expression is obtained by expanding equa-

tion (9) and keeping only terms of order (n + 1)* where o > 0,

giving

S§2+2
3

In Table 4 we compare the accuracy of equations (7), (9), and
(10) for several values of n at the two extreme confidence levels
discussed in this paper. The table lists the exact values from
Table 1 in the column under A, and gives the values from the
approximations along with (in parentheses) the percentage
error with respect to 4,. The Gaussian limit n + S(n)!/? is also
given for comparison. Equation (7) is quite good for
CL = 0.8413 but becomes poor at higher confidence levels.
Equation (9) is the most complicated of the approximate
expressions but is best overall—within 3% of the true limit for
all values of n and all confidence levels considered in this paper.
Equation (10) is fair at low confidence levels but becomes very
accurate at high confidence levels where it actually does better
than equation (9) from which it was derived. Its accuracy is
better than 10% for all values of n for all confidence levels and
better than 1% forn > 4.

Recommended approximation: For applications where upper
limits good to within 10% are accurate enough, use the simple
expression in equation (10), A, ~ n + S(n + 1)}/2 + (82 + 2)/3.
If higher accuracy is required, use the exact upper limits for the
smallest few n and equation (10) for all others or use the more
complicated equation (9). For the special case of S = 1, the
simple expression in equation (7), A, ~n+ (n + )% + 1, is
good to better than 1.5% for all n. The Gaussian statistics limit
A, ~ n + S(n)'/* becomes accurate at the few percent level only
for n > 100.

Aymn+Syn+1+ (10

ii) Lower Limits
To obtain approximate expressions for the Poisson lower
limits, the same approximate x2 inverse relations from the last
section are used. In this case, the starting point is the relation-
ship between the Poisson confidence lower limit and the y?
probability function expressed in equation (5). Combining
equation (5) with equation (6) gives

1 §2—1
han—S [n—- 11
RN n 4+ Y (11)

and with equation (8) gives

1 S \?
Aznll—-————]| .
! n< 9n 3 n)

(12)

TABLE 3
DATA FOR APPROXIMATE EXPRESSIONS FOR POISSON LiMITS

CONFIDENCE LEVEL

PARAMETER 0.8413 0.900 0.950 0.975 0.9772 0.990 0.995 0.9987 0.999 0.9995
St 1.000 1.282 1.645 1.960 2.000 2.326 2.576 3.000 3.090 3.291
B 0.0 0.010 0.031 0.058 0.062 0.103 0.141 0.222 0.241 0.287
Yo —4.00 —2.50 —-2.22 —-2.19 —2.07 —2.00 —1.88 —1.85 —1.80

* Number of Gaussian o.
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TABLE 4
COMPARISON OF Po1ssoN UPPER LIMIT APPROXIMATE EXPRESSIONS
GAUSSIAN LiMIT EQUATION (7) EQUATION (9) EQuATION (10)
n CL S Py Value (% Error?) Value (% Error) Value (% Error) Value (% Error)

[N 0.8413 1.0 1.841 0.000 (-) 1.866 (1.4) 1.826 (0.8) 2.000 (8.6)
) DO 0.8413 1.0 3.300 2.000 39) 3.323 0.7) 3.287 0.4) 3414 (3.5)
2t 0.8413 1.0 4.638 3414 (26) 4.658 0.4) 4.627 0.2) 4.732 (2.0
3o 0.8413 1.0 5918 4.732 (20) 5.936 (0.3) 5.909 0.2) 6.000 (1.4)
4ol 0.8413 1.0 7.163 6.000 (16) 7.179 0.2) 7.154 0.1) 7.236 (1.0)
10 ...t 0.8413 1.0 14.27 13.16 (7.7) 14.28 (0.08) 14.26 (0.04) 14.32 (0.3)

100.......... 0.8413 1.0 111.0 110.0 0.9) 111.0 (<) 111.0 (<) 111.0 (0.01)
(| 0.9995 3.291 7.601 0.000 (-) 6.308 (17) 7.832 (3.0) 7.568 (0.4)
1o 0.9995 3.291 9.999 4.291 (57) 8.811 (12) 10.18 (1.8) 9.931 0.7
2t 0.9995 3.291 12.05 6.654 (45) 10.92 9.4) 12.20 (1.3) 11.98 (0.6)
3 0.9995 3.291 13.93 8.700 (38) 12.83 (7.9) 14.07 (1.0) 13.86 0.5)
4o 0.9995 3.291 15.71 10.58 (33) 14.63 6.9) 15.83 0.8) 15.64 0.5)
10...0ee 0.9995 3.291 25.26 20.41 (19) 24.25 4.0 25.34 0.3) 25.19 (0.3)

100.......... 0.9995 3.291 1374 1329 (3.3) 136.5 (0.6) 137.4 (0.02) 137.4 (0.02)

2 % error = 100 x |value — 4,|/A,.
b Symbol “ < ” means less than 0.01%.

Expanding equation (12) and keeping only terms of order n®
where o > 0, results in

$?—1
A,zn—Sﬁ+ 3

As will be shown below, none of the above three equations are
adequate approximations for all confidence levels discussed in
this paper. I have therefore devised a slightly more complex
expression based on equation (12) that is quite accurate for all

) 13)

n and for all confidence levels in Table 3. The equation is

Axnll 1 S +Bny3
= 9" 3\/;, ’

where § and y are free parameters that are adjusted for each
confidence level. The best values are listed in Table 3 and
shown graphically in Figure 1.

In Table 5 the accuracy of equations (11), (12), (13), and (14)
are compared. Equations (11) and (12) are possibilities for

(14)

Confidence Level

bl o~ o 0o O
< (o N~ o)) () o0 o0
0 o o oo o o0 a0 o
| I l I L | [ |
| V I I
-1+~ PARAMETERS FOR POISSON ]
LOWER LIMIT EQN. 14
n -/ 3
_2 — —
Yy F — 2B
-3 — -
L — .l
_4 — -
L | l 1 I | 0
| 2 3
S
F1G. 1.—Parameters f and y from Poisson lower limit approximation, eq. (14). Dots represent values in Table 3.
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No. 1, 1986 CONFIDENCE LIMITS 341
TABLE 5
COMPARISON OF PoIssON LOWER LIMIT APPROXIMATE EXPRESSIONS
GAUSSIAN LiMIT EquaTiON (11) EquaTioN (12) EQUATION (13) EQUATION (14)
n CL S A Value (% Error?) Value (% Error) Value (% Error) Value (% error) Value (% Error)
| U, 0.8413 1.0 0.173 0.000 (=) 0.134 22) 0.171 0.7) 0.000 (—) 0.171 0.7)
2, 0.8413 1.0 0.708 0.586 (17) 0.677 4.4) 0.712 0.5) 0.586 17 0.712 0.5)
3o 0.8413 1.0 1.367 1.268 (7.3) 1.342 (1.9) 1.372 (0.4) 1.268 (7.3) 1.372 (0.4)
4o 0.8413 1.0 2.086 2.000 4.1) 2.064 (1.1) 2.091 0.3) 2.000 (4.1) 2.091 0.3)
10.......... 0.8413 1.0 6.891 6.838 (0.8) 6.878 0.2) 6.896 (0.07) 6.838 (0.8) 6.896 (0.07)
100.......... 0.8413 1.0 90.02 90.00 (0.02) 90.01 (<)® 90.02 (<) 90.00 (0.02)  90.02 (<)
| 09995 3291 5.00—4 —2.29 (-) 0.608 (-) —0.009 (=) 0.986 (-) 491—4 (1.8)
2, 09995 3291 320—-2 —2.65 (=) 0.104 (-) 0.010 (70) 0.623 (-) 3.17-2 (0.9)
3o 0.9995 3.291  0.150 —-2.70 (-) 1.64—4 (—) 0.107 (28) 0.577 (-) 0.151 (1.0)
4. 0.9995 3291  0.355 —2.58 (—) 0.085 (76) 0.304 (14) 0.695 (-) 0.358 0.8)
10.......... 0.9995 3291  2.699 —0.41 (=) 2.182 (19) 2.646 (2.0) 2.870 6.3) 2.703 0.1)
100.......... 0.9995 3.291 70.33 67.09 (4.6) 69.59 (1.1) 70.30 70.37 (0.05 7032 (0.01)

(0.01)

* % error = 100 x |value — 4,|/4,.
® Symbol “ < ” means less than 0.01%.

CL = 0.8413 but fail for higher confidence levels. Equation (13)
is poor for all cases. Equations (14) is the most complex equa-
tion but is accurate to better than 2% for all values of n and all
confidence levels considered in this paper. For n > 10 it is
accurate to better than ~0.1%.

Recommended approximation: For all cases use equation
(14), 4, = n(1 — 1/9n — S/3(n)*? + pn?)°, where B and y are
given in Table 3 (8 =0 for the special case of S =1). The
results are accurate to better than 2%. For the general S, the
Gaussian statistics limit 4, & n — S(n)!/? becomes accurate at
the few percent level only for n > 100, although for S = 1 it is
accurate to better than 1% forn > 8.

III. CONFIDENCE LIMITS FOR BINOMIAL STATISTICS

a) Relation to Abundance Measurements

We consider next the case where an observer is measuring
two different kinds of distinguishable events. It is assumed that
the source of each event type is random, so that the number of
events of each type detected in a given observation time is
distributed according to Poisson statistics. The objective is to
obtain confidence limits on the ratio of the two event rates
based on the measurement of a small number of events. Exam-
ples of this kind of study are elemental and isotopic abundance
ratios in cosmic-ray astrophysics, spectral-line ratios in X-ray
and y-ray astronomy, and supernova type ratios in stellar
astronomy.

The joint probability function for the two event types can be
related to a combination of Poisson and binomial distribu-
tions. If n; and n, are the number of observed events of types 1
and 2, distributed according to Poisson statistics with true
rates of 4, and 4,, then the joint probability f(n,, n,) of observ-
ing n, and n, is

n1,— A1 /'an —A2
fngny) =L 225

ny! n,!

(A Atmemthtid [y 4o, T
B (ny + ny)! ! v

(15)

where p; = 4,/(4, + 4,) and (","?) is the binomial coefficient
(ny + ny)!/n,! n,!. Thus, the joint probability is equal to the

Poisson probability for the combined rate times the binomial
probability for obtaining specifically n, and n, given that the
combined number of events observed was n; + n,. Another
way of viewing this is as follows: a source randomly emitting
two types of events, each with its own average rate, is equiva-
lent to a source randomly emitting events of unknown type at
an average rate equal to the sum of the individual rates, with a
weighted coin flipped for each event to determine its type.

The goal in the following sections will be to find confidence
limits for p, in equation (15) or equivalently for the ratio of
event rates, r = 4;/4, = p,/(1 — p,). Binomial statistics will be
used since, as shown above, they determine the event ratios.

b) Definitions and Numerical Solutions

For a binomial distribution, the upper limit, p,,, and lower
limit, p,,, for the ratio of type 1 events to total events (type 1
plus type 2) are defined by

ni n

) <X>P’{u(1 =p)' "=1-CL  (n,#n, (16
x=0
ni—1 n

> < >p)1cl(1 —pu)" *=CL
x=0 \X

(see, e.g., Pearson and Hartley 1966; Beyer 1966), where CL is
the single-sided confidence level of the limits and n = n, + n,.
Forn, =n(n, =0)p,, = 1.0and for n, = 0 py, = 0.0.

Equations (16) and (17) were derived for measurements with
fixed n, which is not the case for ratios computed from two
random rates. For two random rates that are both small, these
equations give somewhat conservative limits. As an example,
for all cases with both true rates less than 5.0, the fraction of
observers with upper limits greater than the true ratio is always
more than 0.98 for CL = 0.95. The fraction does approach 0.95
for large rates, and the limits defined here do satisfy the defini-
tion of confidence limits (see Appendix) for all rates and con-
fidence levels. As far as I know, these limits are the best one can
do for abundance measurements.

As was the case for the Poisson limits, exact general alge-
braic expressions for p,, and p;; can not be obtained from
equations (16) and (17). However, as will be discussed below,
there are exact solutions for some special cases, and general
approximate algebraic expressions can be derived. Also, for

(n, #0) (17
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Lo n, 08413 090 095 0975 09772 099 0995 09987 0999 09995
2 0o 1 0841 09000 09500 09750 09772  09%00° 09250  09%87  0.9%0 0950
o 2 0602 0684 0776 0842 0849 09000 09293 09633 09684 09776
30459 0536 0632 0708 0717 0785 0829 0889 09000 09206

4 0369 0438 0527 0602 0612 0684 0734 0808 0822 0850

5 0308 0369 0451 0522 0531 0602 0653 0733 0749 0781

6 0264 0319 0393 0459 0468 0536 058 0668 0684 0718

7 0231 0280 0348 0410 0418 0482 0531 0611 0627  0.662

8 0206 0250 0312 0369 0377 0438 0484 0562 0578 0613

9 0185 0226 0283 0336 0343 0401 0445 0520 0536 0570

10 0168 0206 0259 0308 0315 0369 0411 0484 0499 0532
100 00182 00228 00295 00362 00371 00450 00516 0.0639  0.0667  0.0732
.......... 109172 09487 09747 09874 09886 09750 09275  09°32 090  09°75
2 0748 0804 0865 09057 09102 09411 09586 09786 09816 09870
3 0618 0680 0751 0806 0812 085 0889 09291 09360  0.9493

4 0524 0584 0657 0716 0724 0778 0815 0868 0878  0.898

5 0454 0510 0582 0641 0649 0706 0746 0807 0819 0843

6 0400 0453 0521 0579 058  0.643 0685 0750 0763  0.789

7 0357 0406 0471 0527 0534 0590 0632 0698 0711 0740

8 0323 0368 0429 0482 0489 0544 0585 0652 0665  0.694

9 0294 0337 0394 0445 0452 0504 0544 0610 0624 0653

10 0270 0310 0364 0413 0419 0470 0509 0573 0587 0616
100 00323 00380 00461 00539 00550 00639 00713 00848 00878  0.0947
.......... 1 09440 09655 09830 0916 09224 09767 09283  09°55  0.9%7  09°83
2 0815 0857 09024 09324 09357 09580 09706 09848 09870  0.9%08
30703 0753 0811 0853 0858 0894 09172 09473 09524 09625
4 0615 0667 0729 0777 0783 0827 085 0898 09060  0.9215

5 0546 059 0659 0710 0716 0764 0797 0847 085  0.876

6 0490 0538 0600 0651 0657 0707 0742 0797 0807 0830

7 0444 0490 0550 0600 0606  0.656 0693 0750 0761 0785

8 0405 0450 0507 055 0562 0612 0648 0707 0718  0.744

9 0373 0415 0470 0518 0524 0572 0608 0667 0679  0.705

10 0346 0386 0438 0484 0490 0537 0573 0632 0644 0670

100 00449 00513 00604 00690 00702 00799 00877 0102 0105 0112
.......... 109577 09740 09873 09237 09243 09775 09287  09%6 0975 0987
2 0853 0888 09236 09473 09498 09673 09771 09882 09899  0.9229
30757 0799 0847 0882 0886 09153 09337 09580 09621  0.9701
4 0676 0721 0775 0816 0821 0858 0882 09170 09233 0936l

5 0610 0655 0711 0755 0761 0802 0830 0872 0880 0897

6 0555 059 0655 0701 0706 0750 0781 0828 0837 0856

7 0508 0552 0607 0652 0658 0703 0735 0785 0795 0816

8 0469 0511 0564 0610 0615 0660 0693 0745 075  0.778

9 0435 0475 0527 0572 0577 0622 0655 0708 0719 0742

10 0405 0444 0495 0538 0544 0588 0621 0674 0685  0.709

100 00566 00637 00736 00828 00840 00942  0.103 0117 0121 0128
.......... 1 09660 09791 09898 09249 09254 09780  0.9%00  09°73 0980 09400
2 0879 09074 09372 09567 09588 09732 09813 09204 09217  0.9%42
30794 0830 0871 09010 09044 09292 09447 09650 09684 09751
4 0720 0760 0807 0843 0847 0879 09001 09298 09352  0.9460
5 0658 0699 0749 0788 0793 0829 0854 0891 0897 09117

6 0605 0646 0696 0738 0743 0782 0809 0851 0859 0875

70559 059 0650 0692 0697 0738 0767 0812 0821  0.839

8 0519 055 0609 0651 0656 0698 0728 0775 0784  0.804

9 0485 0523 0573 0614 0619 0661 0691 0740 0750 0771

10 0455 0492 0540 0581 058 0627 0658 0707 0717  0.739

100 00678 00754 00859 00956 00968  0.08  0.16 0132 0135 0143
.......... 1 09716 09826 09215 09758  09%2 09283  09°16 09°77  09%83 09417
2 0896 09212 09466 09633 09651 09773 09842 09219 09230 09251
30821 0853 0889 09148 09177 09392 09525 09700 09730  0.9787
4 0754 079 0831 0863 0867 0895 09132 09391 09438 09532
5 0695 0733 0778 0813 0817 0850 0872 09041 09102 09227

6 0644 0682 0729 0766 0771 0806 0831 0868 0875 0890

7 0600 0638 0685 0723 0728 0765 0791 0832 0840 0857

8 0561 0598 0645 0684 0689 0727 0755 0798 0806  0.824

9 0526 0563 0610 0649 0653 0692 0720 0765 0774  0.793

10 0496 0532 0577 0616 0621 0660 0688 0734 0743 0.763

100 00785 00865 00975 0108 0109 0120 020  0.145 0148 0156
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TABLE 6—Continued

CONFIDENCE LEVEL

ny n, 0.8413 0.90 0.95 0.975 0.9772 0.99 0.995 0.9987 0.999 0.9995
[T 1 0.9756 0.9851 0.9227 0.9264 0.9%267 0.9%86 0.9328 0.9°81 0.9°86 0.9429
2 0.9097 09314 0.9536 0.9681 0.9697 0.9803 0.9863 0.9230 0.9240 0.9%57
3 0.842 0.871 0.9023 0.9251 0.9278 0.9467 0.9584 0.9737 0.9763 0.9814
4 0.780 0.812 0.850 0.878 0.882 0.9068 0.9232 0.9462 0.9504 0.9587
5 0.725 0.759 0.800 0.833 0.836 0.866 0.886 0.9146 0.9201 0.9312
10 0.531 0.565 0.609 0.646 0.650 0.687 0.713 0.756 0.764 0.783
100 0.0889 0.0972 0.109 0.119 0.121 0.132 0.141 0.157 0.161 0.169
Teiiiinns 1 0.9786 0.9869 0.9%36 0.9268 0.9271 0.9%87 0.9337 0.9°83 0.9°87 0.9437
2 0.9199 0.9392 0.9590 0.9719 0.9732 0.9826 0.9879 0.9238 0.9247 0.9262
3 0.858 0.884 0.9127 0.9333 0.9356 0.9525 0.9630 0.9767 0.9790 0.9834
4 0.801 0.831 0.865 0.891 0.894 0.9163 0.9312 0.9518 0.9556 0.9630
5 0.750 0.781 0.819 0.848 0.852 0.879 0.897 0.9230 0.9279 0.9380
10 0.562 0.594 0.636 0.671 0.675 0.709 0.734 0.774 0.782 0.800
100 0.0989 0.108 0.119 0.130 0.132 0.143 0.153 0.169 0.173 0.181
8.t 1 0.9810 0.9884 0.9%43 0.9272 0.9274 0.9289 0.9%44 0.9385 0.9%89 0.9%44
2 0.9280 0.9455 0.9632 0.9748 0.9760 0.9845 0.9891 0.9%44 0.9%52 0.9%66
3 0.872 0.895 0.9212 0.9398 0.9419 0.9572 0.9667 0.9790 0.9811 0.9851
4 0.819 0.846 0.877 0.9008 0.9035 0.9241 0.9376 0.9564 0.9598 0.9665
5 0.770 0.799 0.834 0.861 0.865 0.889 0.9058 0.9299 0.9344 0.9436
10 0.588 0.620 0.659 0.692 0.697 0.729 0.753 0.790 0.798 0.814
100 0.109 0.118 0.130 0.141 0.142 0.154 0.164 0.181 0.184 0.193
9t 1 0.9829 0.9895 0.9%49 09275 0.9277 0.9300 0.9350 0.9386 0.9*00 0.9*50
2 0.9347 0.9505 0.9667 0.9772 0.9783 0.9859 0.9202 0.9250 0.9257 0.9270
3 0.883 0.9043 0.9281 0.9451 0.9471 0.9610 0.9697 0.9809 0.9828 0.9864
4 0.833 0.858 0.887 0.9091 09116 0.9305 0.9429 0.9601 0.9632 0.9694
5 0.787 0.815 0.847 0.872 0.875 0.898 0.9134 0.9356 0.9398 0.9483
10 0.612 0.642 0.680 0.711 0.715 0.746 0.768 0.804 0.811 0.826
100 0.118 0.127 0.140 0.151 0.152 0.165 0.174 0.191 0.195 0.204
10.......... 1 0.9844 0.9205 0.9%53 0.9277 0.9%279 0.9°09 0.9°54 0.9°88 0.9*09 0.9455
2 0.9402 0.9548 0.9695 0.9791 0.9802 0.9872 09210 09254 09261 0.9272
3 0.892 0.9120 0.9340 0.9496 0.9514 0.9642 0.9722 0.9825 0.9842 0.9876
4 0.846 0.869 0.896 0.9161 0.9185 0.9360 0.9474 0.9633 0.9662 0.9719
5 0.802 0.828 0.858 0.882 0.885 0.9056 0.9199 0.9405 0.9444 0.9522
6 0.762 0.790 0.822 0.848 0.851 0.875 0.891 0.9159 0.9206 0.9302
7 0.726 0.754 0.788 0.816 0.819 0.845 0.863 0.891 0.896 0.9071
8 0.692 0.721 0.756 0.785 0.788 0.816 0.835 0.865 0.871 0.884
9 0.661 0.690 0.726 0.756 0.759 0.788 0.808 0.840 0.847 0.860
10 0.633 0.662 0.698 0.728 0.732 0.761 0.782 0.816 0.823 0.837
100 0.127 0.137 0.149 0.161 0.162 0.175 0.185 0.202 0.206 0.214
100.......... 1 0.9%83 0.9290 0.9°49 0.9375 09377 0.9400 0.9450 0.9487 0.9°01 0.9°50
2 0.9230 0.9248 0.9265 0.9276 09277 0.9285 0.9290 0.9%48 0.9355 0.9%69
3 0.9867 0.9893 0.9220 0.9240 0.9242 0.9257 0.9267 0.9279 0.9281 0.9%85
4 0.9799 0.9831 0.9868 0.9894 0.9897 0.9220 0.9%35 0.9%55 0.9258 0.9265
5 0.9728 0.9767 0.9811 0.9844 0.9847 0.9877 0.9896 0.9223 0.9228 0.9239
6 0.9656 0.9700 0.9751 0.9789 0.9794 0.9829 0.9853 0.9887 0.9894 0.9207
7 0.9584 0.9632 0.9689 0.9733 0.9738 0.9778 0.9806 0.9847 0.9855 0.9871
8 0.9512 0.9564 0.9626 0.9675 0.9681 0.9726 0.9757 0.9804 0.9813 0.9832
9 0.9439 0.9496 0.9562 0.9615 0.9622 0.9671 0.9706 0.9759 0.9769 0.9791
10 0.9367 0.9427 0.9498 0.9555 0.9562 0.9616 0.9654 0.9712 0.9723 0.9747
100 0.538 0.548 0.560 0.571 0.573 0.584 0.593 0.607 0.610 0.617

2 Upper limit for ratio type 1 event to type 1 + type 2. Calculate lower limit from this table with lower limit (n,, n,) = 1 — upper limit

(n, ny).
50.9200 means 0.9900; and in general for 9".

any specific values of n,, n,, and CL, exact numerical solutions
can be computed to arbitrary accuracy.

Table 6 lists exact numerically determined values for p,, at
the previously chosen confidence levels for a number of values
of n, and n,. A separate table is not required for the lower
limits because they can be simply obtained from the upper
limits. The relationship between the two, derived from equa-
tions (16) and (17), is

pu=1-p,,, (18)

where p,, is the upper limit for the ratio of type 2 events to
total events and can be obtained from Table 6 by switching n,
and n,. For example, if the observed number of events are
n, = 6 and n, = 4, the best guess for the ratio of type 1 to total
is 0.6, and the 99% confidence lower limit is 1 minus the upper
limit from the table for n, =4, n, =6, or 1 — 0.782 = 0.218.
The 99% confidence upper limit is 0.907 directly from Table 6,
and the 99% confidence double-sided interval (CL = 0.995
column) is 0.191-0.923.

In many cases, the quantity of interest is the ratio of type 1 to
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type 2 event, r,,, instead of type 1 to total. The upper and
lower limits for r,, are related to p,, and p,, by

plu
- 19
Fio2u 1 _ plu > ( )
Pu 1 =i,
Fiy] = =— (20)
S - Pu D2y

Using the above example of n; = 6 and n, = 4, the best guess
for ry, is 1.5, and the 99% confidence upper and lower limits
(single-sided) are 9.73 and 0.279.

c) Algebraic Expressions

There are two special cases where exact expressions for p,,
can be derived from equation (16). These are

CLY/(n+n2) (nz = 1)
Pru= {1 —(1-CLm  (n,=0)"

Lower limits for n; = 1 and n, = 0 can be obtained from these
expressions using equation (18). For instance, p;(n, = 0) =
(1 — CL)*™,

For other values of n, and n,, we make use of the relation
between the binomial sum and the incomplete beta function,
1|0, ) = 1,(00 B)

n

) (Z)pxa — P =Iplan — o+ )

X=a

21

22

(see, e.g., Abramowitz and Stegun 1965). Combining this rela-
tion with equations (16) and (17) gives

I(py,ln, +1,n)=CL, 23)
I(pyln, ny +1)=1—-CL. 24)

Thus, p,, and p;; can be obtained using tables of percentage
points of the incomplete f-function (see, e.g., Beyer 1966) in the
same manner that y? tables are used to give Poisson limits. As
with the Poisson limits, the technique is straightforward but
cumbersome since several algebraic steps are involved and, in
many cases, interpolations in the tables are required.

Equation (23) is useful for developing an approximate
expression for p,,. An approximate inverse function for the
incomplete B-function is given by Abramowitz and Stegun
(1965) as follows: if I(x,|a,f) = 1 — a and y, is defined such
that G(y,) = a [see § I1b(i)], then

o

xazrﬂem-, (25)
where
yh + )2 1 1 5 2
w= - - At=—=—1,
h 2B—1 2a—1 6 3h
h=2 ! + ! -
T\ -1 20—1)
and
2
_ya_3
A——6 .

Combining equations (23) and (25), adding a correction term,
and using the variable S defined in § IIb(i) (see Table 3), we
derive an approximate expression for p,,,

(g + 1) + en,

~ 2
g+ e +ny (26)

Vol. 303

where

W_S(h+/l)1/2+ 1 ia5_ 2
- h 2n, —1  2ny + 1 6 3h)°

heof — 1 B
T2, —1 " 2n,+1)
523
6 s

A=

and
€ =0.64(1 — S)e " .

I was not able to find a simpler expression than equation (26)
that is generally useful for all confidence levels and all values of
n, and n,. For cases where equations (21) do not apply (i.e., for
n, > 2 and n, > 1), equation (26) gives upper limits accurate to
better than 4% for all confidence levels. If n; > 4 and n, > 4,
equation (26) is accurate to better than 1%. These two percent-
age accuracies also hold for 1 — p,,, which is the quantity used
to calculate lower limits. In the Gaussian limit of large n, and
n,, the upper limit is given by

ny S/ nyn,
(n, + n2)3/2 ’

This expression becomes accurate at the 1% level only for n,
and n, both greater than ~ 50.

Recommended expressions: For n; =0 or n, =1, use the
exact equations (21) for the binomial upper limits. For other
values of n, and n, use equation (26), which gives 4% accuracy.
Calculate the lower limits from these upper limit expressions
using p,; = 1 — p,,, where p,,, is the upper limit with n, and n,
switched. This relationship combined with equations (21) gives
exact lower limits for n, =1 or n, =0 and combined with
equation (26) gives lower limits accurate to within 4% for all
other values.

P = 27

ny +n,

IV. SUMMARY

Poisson statistics apply when event rates are calculated from
small numbers of observed events. For n observed events, the
single-sided upper limit, 4,, and single-sided lower limit, 4,, of
confidence level CL are given by equations (1) and (2). Previous
techniques for obtaining actual limit values from these equa-
tions were cumbersome. This paper has presented tables of
upper and lower limits (Tables 1 and 2) for n = 0-50 for all
common confidence levels used in astrophysics. Also, conve-
nient approximate expressions for 4, and 4, were developed,
the most useful of which are 1, ~ n + S(n + 1)}? + (82 + 2)/3
(good to better than 10% for all n and CL and better than to
1% for n > 4) and A, = n[1 — 1/9n — S/3(n)*'? + Bn’]® (good
to better than 2% for all n and CL), where S, f3, and y are given
in Table 3.

Binomial statistics apply when ratios of rates of two different
event types are calculated from small numbers of observed
events. For n; observed events of type 1 and n, of type 2, the
single-sided upper limit, p,,, and single-sided lower limit, p,,, of
confidence level CL to the ratio of type 1 event rate to type 1
plus type 2 are given by equations (16) and (17). Again, in this
case, previous techniques for obtaining values from these equa-
tions were cumbersome. Considering upper limits first, Table 6
lists values for p,, for a number of small n, and n, for all
common confidence levels used in astrophysics. There are two
special cases with exact expressions for the upper limits: p,, =
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CLY™*" (n, = 1) and p;, = 1 — (1 — CL)!/"2 (n, = 0). Theap-
proximate expression in equation (26) gives values for p,,
accurate to better than 4% for all other n; and n,, and to
better than 1% for n; > 4 and n, > 4. Lower limits can be
obtained directly from the upper limits in the table or in the
above equations by taking 1 minus the upper limit value, for n,
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Israel. This paper is a development from an unpublished report
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and n, exchanged.

APPENDIX
NUMERICAL VERIFICATION OF POISSON LIMIT EQUATIONS

The purpose of this appendix is to demonstrate that the Poisson upper and lower limits defined by equations (1) and (2) in § II
satisfy the definition of confidence limits and do so in an optimum manner. To simplify the discussion we will first consider only
upper limits and then generalize the results to include lower limits.

For a quantity with a continuous distribution function such as a Gaussian distribution, upper limits are defined to be confidence
limits of confidence level CL if they satisfy the following condition; for a large number of observers measuring a given physical
quantity (with measurements distributed about the true value according to the distribution function) and each observer assigning an
upper limit based on his or her measured value, 100 x CL% of them will have upper limits greater than the true value (see, e.g.,
Cramér 1945). For a quantity with a discrete distribution function, such as a Poisson distribution, it is not possible to generate
upper limits that satisfy this condition for all parameter values, so the definition becomes: at least 100 x CL% of the observers have
upper limits greater than the true value. The lower limit condition is that at least 100 x CL% of the observers have lower limits less
than the true value.

Calculations have been performed to verify that the Poisson upper and lower limits in equations (1) and (2) satisfy this definition
of confidence limits. A finely spaced sample of assumed true event rates, A,, was chosen. For each 4,, a distribution of observed values
was then determined from the Poisson distribution function

/q'ne—l,

P(n) = *——

o (A1)

For each observed value, upper and lower limits of confidence level 0.8413 (corresponding to 1 ¢ Gaussian limits) were obtained
from Tables 1 and 2. A tally was then taken of all observed values to determine the fraction of observers with upper limits greater
than the true rate and the fraction with lower limits less than the true rate. The results are plotted as functions of true rate in Figure
2. As expected for a discrete distribution, the fractions vary as functions of true rate, dipping to exactly 0.8413 each time the true rate
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FI1G. 2—Fraction of observers with (a) upper limit greater than the true rate 4, and (b) lower limit less than 4,, as functions of 4,. For all values of 4,, the fraction is
greater than or equal to the confidence level of 0.8413.
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passes one of the limit values. The size of the variation decreases with increasing 4,, approaching a constant value of 0.8413 in the
limit. This is as expected since the discrete Poisson distribution approaches the continuous Gaussian distribution in the limit of
large A,. The confidence limit definitions are satisfied for all rates; at least 84.13% of the observers have upper limits greater than the
true rate and lower limits less than the true rate, for all ,. The limits are optimum in the sense that the fractions are exactly 0.8413 at
some discrete values of the true rate. If any one of the upper limits in Table 1 were decreased or lower limits in Table 2 increased, the
fraction would dip below 0.8413 for some true rate.
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