
LSU rev20AUG2020 1

Serial I/O

Serial communication sends one data point at a time, as
opposed to parallel communication which sends
multiple data points at once.

LSU rev20AUG2020 2

Serial Interface

•Asynchronous serial can be implemented with data lines only.
–Each device generates its own clock (Baud Rate Generator).

–Handshaking lines can be used to signal status of devices.

•Synchronous serial interfaces will have a separate Clock line.
–Clock is generated by a Master device.

•One bit is transferred for each clock cycle.

LSU rev20AUG2020 3

Parallel Interface

•Data lines may be unidirectional or bi-directional.

•Width of data bus is usually byte-wide (8 data bits).

•A full byte of data is transferred on each R/W clock cycle.

•Chip Select (CS) allows multiple devices to share bus.

Serial I/O on the
Arduino Mega

LSU rev20AUG2020 4

Serial hardware communicates via electrical pulses that
represent 1’s and 0’s. The Arduino uses a Universal
Serial Bus (USB) to connect to the serial hardware.

Serial communication is also possible via software
libraries, but this is not as efficient.

The Mega has one USP port and 10 serial pins

LSU rev20AUG2020 5

Synchronous and Asynchronous Serial
Communication

•Synchronous means the devices involved use the same clock-signal
when communicating, while asynchronous means the devices use
their own individual clocks.

•Pins 1 & 14-19 use a Universal Asynchronous Receiver/Transmitter
(UART) for asynchronous communication. Yet, no two clocks run the
same, so asynchronous communication is slower because extra data
must be sent periodically to ensure both devices are in sync.

LSU rev20AUG2020 6

Asynchronous
Serial Communication

Serial communication usually involves sending or receiving
“characters” using the ASCII code. For example, the character “S” is

represented by the binary number “01010011” or 53 in hexadecimal.

An asynchronous transmission of “S” begins with a start bit,
followed by 8 data bits and ending with a stop bit. There are
numerous options for number data bits, speed and an optional parity
bit.

Serial Functions for the Arduino Mega

LSU rev20AUG2020 7

The Arduino website has excellent explanations of how these functions
work and a plethora of examples of how to use them.

LSU rev20AUG2020 8

The Arduino Mega has three additional hardware serial
ports: Serial1 on pins 19 (RX) and 18 (TX), Serial2 on pins
17 (RX) and 16 (TX), Serial3 on pins 15 (RX) and 14 (TX). To
use these pins to communicate with your personal
computer, you will need an additional USB-to-serial
adaptor, as they are not connected to the Mega’s USB-to-
serial adaptor.

Extra Serial Ports

LSU rev20AUG2020 9

Synchronous Serial I/O

Synchronous serial I/O uses a separate line for a CLOCK signal. The
synchronous serial clock, data lines, and Arduino all use TTL logic
levels, so no level converters or line drivers/receivers are required.

There are several protocols in use. Some use a bi-directional data line
while others use separate Data-In and Data-Out lines. The Master
generates the clock and initiates and controls data transfer.

LSU rev20AUG2020 10

The I2C Bus

•Inter-Integrated-Circuit or I2C (pronounced I-too-see or I-squared-see)
is a synchronous serial protocol that uses a bi-directional data line and
supports multiple slave devices controlled by a I2C bus master.

•Defined by Phillips Semiconductor and became an industry standard.

•The clock line is called SCL, the data line SDA

LSU rev20AUG2020 11

•The I2C bus master generates SCL and initiates communication with
one of the slave devices. Each device has a unique address for device
selection.

•A device address can be a combination of bits that are “hard-wired”
into the chip design and one or more pins on the device. These pins can
be wired High or Low to select an address that doesn’t conflict with
other devices on the I2C bus.

•Pull-up resistors are required on both the clock and data lines. Some
chips may have internal pull-up resistors on specific pin.

•A variety of special function integrated circuits are available with I2C
interfaces, including memory chips, analog-to-digital converters,
digital-to-analog converters and real-time-clocks.

LSU rev20AUG2020 12

•A START sequence begins a bus transmission by transitioning SDA
from High to Low while SCL is High.

•A STOP sequence ends a transmission. The Stop sequence occurs
when the master brings SDA from Low to High while SCL is High.

I2C START and STOP

LSU rev20AUG2020 13

•A typical I2C bus sequence for writing to a slave device:
•Send a START sequence
•Send the I2C device address with the R/W Low (for Write)
•Send the data byte
•Optionally send additional data bytes (after repeating START)
•Send the STOP sequence after all data bytes have been sent

•The Slave responds by setting the ACK bit (Acknowledge)

I2C Write Sequence

LSU rev20AUG2020 14

•Reading an I2C Slave device usually begins by writing to it. You must
tell the chip which internal register you want to read.

•I2C Read Sequence
•Send the START condition
•Send the device address with R/W held Low (for a Write)
•Send the number of the register you want to read
•Send a repeated START condition
•Send the device address with R/W set High (for a Read)
•Read the data byte from the slave
•Send the STOP sequence

I2C Read Sequence

LSU rev20AUG2020 15

I2C Read example using device address 1100000 and
reading register number 1.

LSU rev20AUG2020 16

I2C Programming on the
Arduino Mega

The wire library allows you to communicate to slave
devices using the I2C bus. The functions available are
as fallows:

The Arduino website has excellent explanations of how these functions
work and a plethora of examples of how to use them.

LSU rev20AUG2020 17

Other Synchronous Serial Protocols

Several IC manufacturers have developed their own protocols for
synchronous serial communication. The data sheets and application
notes from the chip manufacturer should be consulted for design and
troubleshooting tips.

•A popular serial I/O protocol is

–SPI (serial peripheral interface from Motorola)

