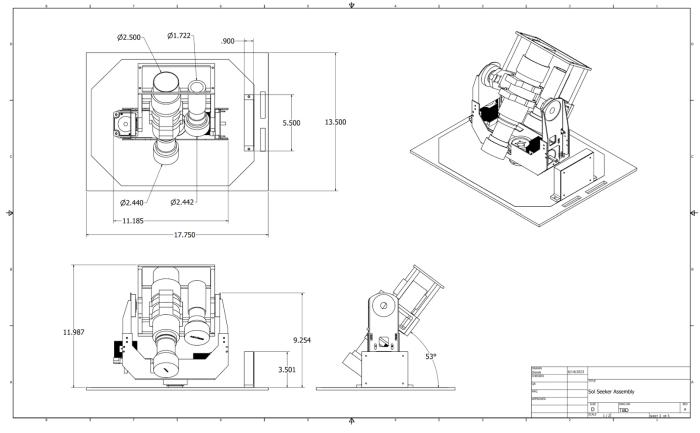


Payload Title:	Sol Seeker		
Payload Class:	Small Large (circle one)		
Flight Number:	09		
Institution: Collec	ege of the Canyons		
Contact Name:	Derek Peraza		
Contact Phone:	<u>(818)-634-0303</u>		
Contact E-mail:	daperaza@my.canyons.edu		
Submit Date:	6/30/2023		

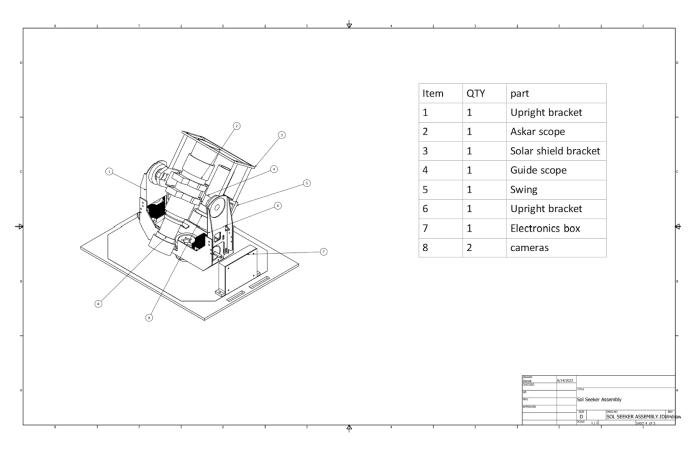
I. Mechanical Specifications:

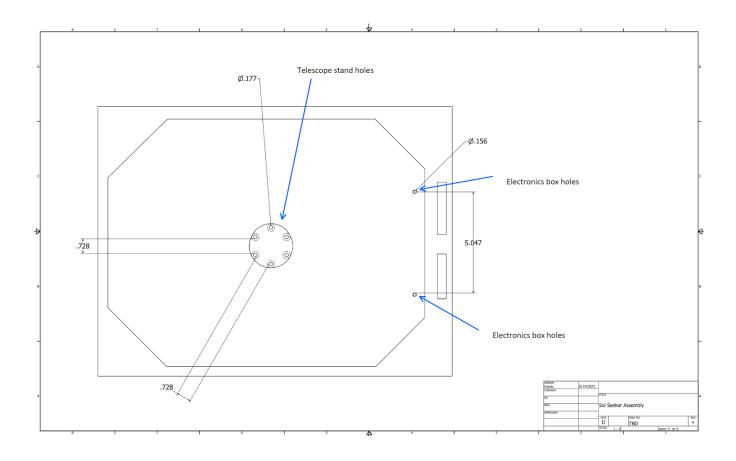
A. Measured weight of the payload in grams (not including payload plate): 6.311 kg


Item	Mass (g)	Uncertainty	Measured or Estimated
ZWO - ASI178MM	322 g	0.002 kg	Measured
with guide scope			
ZWO - ASI585MC with	1.325 kg	0.002 kg	Measured
Askar scope			modourou
Stand with motors	3.544 kg	0.002 kg	Measured
and uprights and			Weasured
swing			
Electrical components	1.076 kg	0.002 kg	Measured
Solar shield bracket	44 g	0.002 kg	Estimated
TOTAL	6.311 kg	0.002 kg	

A. Provide a mechanical drawing detailing the major components of your payload. Mechanical drawings detailing the attach points from the payloads to the payloads plate are required.

All dimensions are in inches


Payload dimensions



Main components of payload

Attach points from the payload to the payloads plate

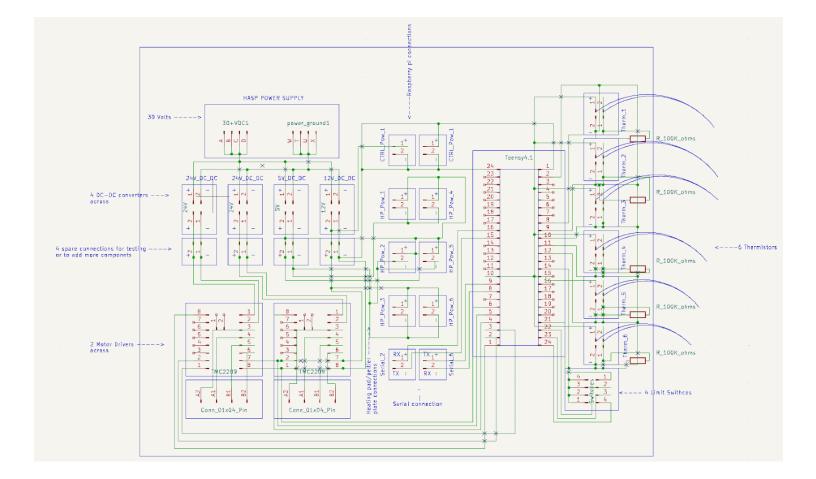
B. Other relevant mechanical information

Max height is 11.987 in at a 53 angle

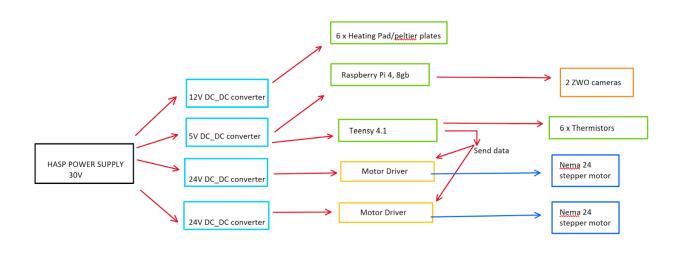
All telescope orientations are within keep out zone

II. Power Specifications:

A. Measured current draw at 30 VDC: ________ ~0.45 A


Item	Current (A)	Voltage (V)	Power (W)	Uncertainty
1st Nema 24 stepper motor	0.3 A	24 V	7.2 W	± 10% watts

2nd Nema 24 stepper motor	0.3 A	24 V	7.2 W	± 10% watts
Raspberry pi 4 8gb ram	885 mA	5 V	4.43 W	± 10% watts
teesny 4.1	100 mA	5 V	0.5 W	± 10% watts
6 x (thermistors)	240 mA	0	0 W	± 10% watts
ASI585MC	150 mA	5V	0.75 W	± 10% watts
ASI178MM	150 mA	5V	0.75 W	± 10% watts
2 x 24V DC-DC Converter	2 A	0 V	0 W	± 10% watts
12V DC-DC Converter	1 A	0 V	0 W	± 10% watts
5V DC-DC Converter	1 A	0 V	0 W	± 10% watts
TOTAL	0.45 A	30 V	13.63 W	



B. If HASP is providing power to your payload, provide a detailed power system wiring diagram starting from pins on the student payload interface plate EDAC 516 connector to all major components of your payload. All voltage lines must be labeled, and any power converters must be documented.

C. Other relevant power information:

III. Downlink Telemetry Specifications:

A. Serial data downlink format: Stream

Packetized >

- B. Approximate serial downlink rate (in bits per second): <u>0.37 considering</u> we are sending 1 downlink packet every 5 minutes
- C. Specify your serial data record including record length and information contained in each record byte. You must complete the table and include a sample data record.

Byte	Bits	Description
1	0-8	Starting Symbol
byte		
1	9-17	Color Camera Temperature
byte		
1	18-26	Monochrome Camera Temperature
byte		
1	27-35	Color Camera Scope Temperature
byte		
1	36-44	Monochrome Camera Scope Temperature
byte		
1	45-53	Raspberry Pi Temperature
byte		
1	54-62	Teensy 4.1 Temperature
byte		
2	63-75	Amount of images taken
bytes		
2	76-88	Amount of times it acquire the sun
bytes		
2	89-101	Amount of times it restarts
bytes		

Ast			
	1	102-110	Ending Symbol
	byte		

Sample Data Record:

\tabcdefghikjl\n

- D. Number of analog channels being used: 0
- E. If analog channels are being used, what are they being used for? No
- F. Number of discrete lines being used: 0
- G. If discrete lines are being used what are they being used for?
- H. Are there any on-board transmitters? If so, list the frequencies being used and the transmitted power.

Transmitter Model	Frequency	Transmitting Power
N/A	N/A	N/A
N/A	N/A	N/A
N/A	N/A	N/A

I. Other relevant downlink telemetry information. None

IV. Uplink Commanding Specifications:

- A. Command uplink capability required: Yes No (circle one)
- B. If so, will commands be uplinked in regular intervals: Yes No (circle one)
- C. How many commands do you expect to uplink during the flight (can be an absolute number or a rate, i.e. *n commands per hour*): <u>Expect one every</u> three hours if needed.

D. Provide a table of all uplink commands for your payload

Command Name	2-Byte Command (Hex Format)	Command Description
Reset	RS	This will be used to reset the tracking

- E. Are there any on-board receivers? If so, list the frequencies being used. No
- F. Other relevant uplink commanding information. None

V. Integration and Logistics

- A. Date and Time of your arrival for integration: <u>8:00AM on 7/24/202</u>
- A. Approximate amount of time required for integration: <u>10 -12 hours</u>
- B. Name of the integration team leader: <u>Drake Lovelady</u>
- C. Email address of the integration team leader: <u>drlovelady@my.canyons.edu</u>
- D. List **ALL** integration participants (first and last names) who may be present for integration with their email addresses:

Name	E-Mail Address	Phone Number
Teresa Ciardi	teresa.ciardi@canyons.edu	(661) 313-6015
Gregory Poteat	gregory.poteat@canyons.edu	(661) 670-9108
Clarissa Zuo	cyzuo@my.canyons.edu	(925) 368-0541
Drake Lovelady	drlovelady@my.canyons.edu	(661) 607-1560
Derek Peraza	daperaza@my.canyons.edu	(818) 634-0303
Isaiah Romero	iromero@my.canyons.edu	(805) 990-4553
Logan Jambe	loganjambe@gmail.com	(661) 964-8056

Robrindra Mukherjee	astromuk@g741.org	(818) - 326 - 0237
David Flynn	engrdave@imac.com	(661) - 644 - 0708
Glenn Basore	qpb91384@hotmail.com	(661) - 644 - 5487

F. Define a successful integration of your payload:

A fully assembled and operational payload will be brought to CSBF on integration day. Success through integration will first require a successful power on and systems check including sample data to show that the payload is functioning as expected prior to thermal/vacuum testing.

For testing, circuits will be run back-to-back and current tested to assure everything is functioning correctly and that the payload remains under maximum power draw.

Using onboard sensory data in compliance with the readout of testing conditions confirmation that the sensors are working as expected can be observed. The payload will be run through various electrical cycles to verify that these systems operate under the prescribed conditions. Materials will perform as expected while exposed to the wide temperature range. Final success will be determined upon a visual inspection of the payload. Criteria for passing visual inspection will include no warping, melting, cracking, or fracturing on any aspect of the payload external structure.

- E. List all expected integration steps:
 - \rightarrow Deliver the integration plate with mounted Sol Seeker payload to HASP officials for integration check, including power draw and weight check.
 - → Integrate Sol Seeker payload onto the gondola platform.
 - \rightarrow Perform a test on the cameras, and motors.
 - \rightarrow Verify functionality of the software algorithms.
 - → Test onboard sensor equipment.

F. List all checks that will determine a successful integration:

→ Payload is safely secured to the HASP integration plate with all electrical connections secured.

→ Payload powers on and off successfully during thermal vacuum chamber testing.

→ Flight computer data logger (integrated in Teensy & Raspberry-Pi) logs data successfully.

 \rightarrow Cameras is functional at the temperature extremes.

 \rightarrow No fractures or strains observed in the dynamic mission-critical components during thermal vacuum chamber testing. Dynamic mission-critical components include the cameras.

G. List any additional LSU personnel support needed for a successful integration other than directly related to the HASP integration (i.e. lifting, moving equipment, hotel information/arrangements, any special delivery needs...):

None

H. List any LSU supplied equipment that may be needed for a successful integration:

None

VI. Hazards

A. Are you flying anything that is potentially hazardous, as listed in the Call for Proposal and the HASP Student Manual, to HASP or the ground crew before or after launch: Yes No (Circle one)

Appendix A: NASA Hazard Tables

If you intend to fly a listed hazard on HASP, you must **fully complete** the appropriate hazard form and include the form on **both** the Preliminary PSIP and the Final PSIP. This documentation is required for NASA safety to clear your payload for flight. Be specific and as detailed as possible with the information requested.

Appendix A.1 Radio Frequency Transmitter Hazard Documentation N/A

HASP 202	HASP 2022 RF System Documentation	
Manufacture Model		
Part Number		
Ground or Flight Transmitter		
Type of Emission		
Transmit Frequency (MHz)		
Receive Frequency (MHz)		
Antenna Type		
Gain (dBi)		
Peak Radiated Power (Watts)		
Average Radiated Power (Watts)		

Appendix A.2 High Voltage Hazard Documentation N/A

HASP 2022 High Voltage System Documentation	
Manufacture Model	
Part Number	
Location of Voltage Source	
Fully Enclosed (Yes/No)	
Is High Voltage source Potted?	
Output Voltage	
Power (W)	
Peak Current (A)	
Run Current (A)	

Appendix A.3 Laser Hazard Documentation N/A

HASP 2022 Laser System Documentation				
Manufacture Model				
Part Number				
Serial Number				
GDFC ECN Number				
Laser Medium				
Type of Laser				
Laser Class				
NOHD (Nominal Ocular Hazard Distance)				
Laser Wavelength				
Wave Type		(Continuous Wave, Single Pulsed, Multiple Pulsed)		
Interlocks		(None, Fallible, Fail-Safe)		
Beam Shape		(Circular, Elliptical, Rectangular)		
Beam Diameter (mm)		Beam Divergence (mrad)		
Diameter at Waist (mm)		Aperture to Waist Divergence (cm)		
Major Axis Dimension (mm)		Major Divergence (mrad)		
Minor Axis Dimension (mm)		Minor Divergence (mrad)		
Pulse Width (sec)		PRF (Hz)		
Energy (Joules)		Average Power (W)		
Gaussian Coupled (e-1, e-2)		(e-1, e-2)		

Single Mode Fiber Diameter	
Multi-Mode Fiber Numerical Aperture (NA)	
Flight Use or Ground Testing Use?	

Appendix A.5 Battery Hazard Documentation N/A

HASP 2022 Battery Hazard Documentation		
Battery Manufacturer		
Battery Type		
Chemical Makeup		
Battery modifications	(Must be NO)	
UL Certification for Li-Ion		
SDS from manufacturer		
Product information sheet from manufacturer		