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1. Abstract  

Observations of the Sun during a high-altitude balloon flight, such as during a total solar 
eclipse, must consider factors such as the position of the Sun in the sky for the duration of the 
flight, the angular sensitivity of instrument solar detectors, and potentially large rotational and 
pendular fluctuations in payload orientation. In 2021, a student-led team developed an 
orientation system called COMPASS (Calculating Orientation and Measuring Pointing Angle for 
Scientific Systems) for flight on the High-Altitude Student Platform (HASP). The goal of 
COMPASS is to determine the orientation of HASP using two independent systems. The first 
method uses an accelerometer and magnetometer system. The second system is a camera 
array to capture the image of the sun and determine the orientation of the payload from the 
observed sun position. This camera system consists of two Arducam cameras with wide angle 
lenses used to cover a total horizontal angle of ~190° and total vertical angle of ~60° attached 
to a Raspberry Pi. The performance of these cameras as an orientation system will be compared 
with the results of the magnetometer/accelerometer system to ascertain whether these 
cameras are a viable method for determining the orientation of a balloon payload.  
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2. Goals and Objectives  
2.1. Mission Goal 

The goal of COMPASS is to determine the orientation of a payload in space by 
measuring the payload’s magnetic heading, acceleration, and verifying these measurements 
with an array of cameras using the Sun as a reference. These measurements were taken at 
float altitude of around 120k feet. Determining the direction in which a payload points is 
important for making measurements using field of view dependent sensors when the 
sensor placement is not fixed, such as on a future balloon payload. 

 
2.2. Objectives 

2.2.1. Scientific Objectives 
1. Measure azimuth and elevation of the payload’s pointing vector.  
2. Verify azimuth and elevation measurements using an array of cameras with 
the Sun as a reference.  
3. Determine right ascension and declination of the payload’s pointing vector. 

2.2.2. Technical Objectives 
1. Adhere to HASP physical requirements.  
2. Interface with HASP power system before and during flight.  
3. Interface with HASP control/communication system before and during flight.  
4. Process sensor and camera data with a microprocessor.  
5. Store data on an SD card for analysis after flight. 
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3. Background 
3.1 Scientific Background  

 The azimuth is defined as the angle between the 
magnetic north vector and the observed object’s vector on 
the horizontal plane. In the case of this payload, it would be 
the angle between north and the direction in which the 
payload points. Azimuth can be measured with a magnetic 
compass (magnetometer) by relating the measured 
magnetic field readings to the Earth’s magnetic field to find 
a relative angle. The elevation (or altitude) is the angle 
between an object (or in this case the payload pointing 
vector) and the observer’s local horizon. Elevation can be 
measured with a tilt sensor/accelerometer, using the 
Earth’s gravity as a reference. These two measurements are 
to describe where the payload is pointing in the Earth’s 
reference frame. Right ascension and declination can also then be calculated using the 
orientation of the payload, latitude, longitude, and time of observation.  
 To verify whether the readings from the magnetometer are correct, an array of 
cameras placed on the outside of the payload were used to orient the payload with respect 
to the Sun and the Earth’s reference frame. These cameras cover the total range of the 
Sun’s motion relative to the payload from an early estimate of float time to sunset. This 
results in an estimated total change of 190 degrees in azimuth and 50 degrees in elevation. 
Snapshots from these cameras and their timestamps are then be sorted, and pictures not 
containing the Sun are be disregarded. The rest were run through image processing 
software to pinpoint the location of the Sun relative to the payload and relative to the Earth 
at different times and will be compared to the magnetometer readings at these times. The 
field of view and sensor orientation issue arose in a previous LaACES sounding balloon 
payload called Student Payload for UV Detection (SPUD), designed and built by 
undergraduates during the spring semester of 2020. SPUD used UV sensors to measure UV 
and ozone in the atmosphere. The UV sensor response was dependent on the angle at 
which the radiation from the Sun hit the sensor. A magnetometer was placed inside the 
payload with the intention of using the magnetic field readings to determine the payload’s 
orientation and solar incidence angle at any given time and therefore correct the UV 
irradiance readings. However, this did not work as planned due to what the team believed 
to be unforeseen electromagnetic interference on the magnetometer from the payload 
electronics.  

Figure 1 This figure shows what the azimuth 
and elevation mean physically. 
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 COMPASS’ use of an orientation system (magnetometer and accelerometer) placed on 
a boom away from the payload, as well as one inside the payload, will be able to provide 
insight into the functionality of a magnetometer when used for scientific ballooning 
applications. Specifically, COMPASS will provide information on the use of a magnetometer 
to determine the azimuth and elevation at which a payload points. The “front” of the 
payload was defined to be the -x direction of the magnetometer. To verify that these 
magnetometer readings are correct, an array of cameras placed around the payload took 
take snapshots during flight to orient the payload with respect to the Sun. 
 

3.2. Technical Background 
Because a future goal of such an orientation system would be to ascertain when 

detectors are pointed at the Sun, we would like to determine the azimuth and elevation of 
the payload’s pointing vector within half a degree of the Sun’s angular size (0.5 degrees). 
Therefore, our desired accuracy is 0.25 degrees. This is required because COMPASS’ 
verification system uses the Sun as a reference. These magnetometer measurements and 
camera snapshots were taken once HASP reaches float altitude and is stable. Ascent and 
descent were considered because the motion of the payload during these time periods is 
too erratic to take measurements within the specified accuracy. To take measurements at 
roughly every 1/8th (0.125) degree interval (half the required accuracy, for thoroughness 
and redundancy), the payload needed to sample data twice every second at float. This 
sampling rate was determined by estimating the rate of rotation of HASP from previous 
flight videos to be 0.23 degrees/second at float. 

Figure 2 This figure shows the interior of our previous LaACES payload - 
SPUD. 
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Because of the importance of cameras in this payload, a Raspberry Pi was used as the 
microprocessor because of its many compatible camera options and full camera library.  
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4. Payload Design 
4.1. Principle of Operation 

 COMPASS determines the orientation of a balloon payload in space by measuring the 
payload’s magnetic heading with a magnetometer and the payload’s tilt with an accelerometer. 
These measurements are verified using an array of cameras on the main payload to take 
snapshots of the Sun in real time and downlink them to HASP. These snapshots are compared 
to the orientation data that can be correlated with tracking the position of the Sun. To minimize 
electronic interference between the magnetometer and the rest of the electrical components, 
one of the magnetometers was placed on a boom situated away from the main HASP gondola. 
COMPASS also contains multiple temperature sensors to monitor the temperature of electrical 
components during flight. All sensor and camera data were processed using a Raspberry Pi on 
the main payload. The data from the sensors on the boom was processed through an Arduino 
Mega, which converts the signals from analog to digital and then send the serial communication 
to the RPi on the main payload. 

System Design Diagram 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 This diagram shows the main subsystems that make up COMPASS. 
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4.2. Electrical Design 
4.2.1. Sensors 
4.2.1.1. Internal Orientation system  

 This system measures the azimuth and elevation of the payload. This orientation 
module contains a 3-axis magnetometer used to measure a magnetic field vector at each 
timestamp. Given that we know what Earth’s magnetic field is, we can compare this to our 
magnetic field readings to determine the azimuthal direction of the payload in space. Based on 
the pointing accuracy requirement, we were able to determine that the magnetometer shall 
have an accuracy of about +/-0.1uT. This system also contains a 3-axis accelerometer which is 
used to measure the elevation of our payload. The accelerometer allows us to detect which 
direction our payload is pointing down towards Earth which can be used to determine the angle 
of elevation. 

 After testing multiple magnetometer options, the Bartington Mag648 magnetometer 
produced the most consistent results compared to a calibrated lab magnetometer. This 
procedure involved supplying direct current to a Helmholtz coil to produce a magnetic field. The 
expected value of this magnetic field was calculated, then compared to the actual value read by 
the magnetometer (minus the background field measured by the lab magnetometer). Overall, 
the Mag648, consistently gave us results close to what we expected to measure. The Mag648 
was supplied 12VDC by the COMPASS power regulation system and has a range of ±100uT that 
reads out 6 analog signals to ADC1 (MCP3208) of the control system. This orientation system 
also contains a LSM303AGR accelerometer that has a selectable range from +-2g to +-8g that 
measures acceleration in 3-axis and communicates with the Raspberry Pi via I2C 
communication. 

4.2.1.2. External Orientation System 

 The External Orientation System is mounted on a fiberglass boom away from our main 
payload (and the HASP gondola) to avoid possible electronic interference. This orientation 
system includes its own magnetometer, accelerometer, 12-bit ADC, +5V reference, RS-232 
Level Shifter, and Arduino Mega for processing data. This system communicates with the 
Raspberry Pi on the main payload via a DB-9 serial cable that runs from both RS-232 level 
shifters (one on the main payload and one on the boom). 

 Mounting the module far from the microcontroller can cause potential communication 
issues, because sensors cannot be directly read over such long distances. RS232 communication 
is used to communicate such long distances. However, because the accelerometer on the 
External OS requires communication via the I2C bus, there would have to be some way of 
converting from I2C to TTL-UART, then to RS232 before it can communicate with the RPi4 on 
the main payload. We also require a way to convert the magnetometer and environmental 
monitor analog signals to digital signals before it can communicate with the RPi4. Our solution 
to solve both these problems was to add a 12-bit ADC, an Arduino Mega microcontroller, and 
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an RS232 level shifter to the boom that can read the detector with an ADC, and then convert 
the digital signal to RS232 before it can be transmitted to the control system on the HASP 
payload plate. 

 We cannot use the 10-bit ADC on the Arduino to read in the magnetometer signal 
because this does not fulfill the accuracy needs for the magnetometers. To satisfy this 
requirement, we use a 12-bit ADC between the magnetometer and the SPI digital pins on the 
Arduino to read detector data and convert the analog signals to digital signals, then to TTL-
UART. The Arduino is used to convert the accelerometer I2C signals to TTL-UART. 

4.2.1.3. Camera system 

 An array of two cameras takes simultaneous snapshots of the Sun to verify the 
measurements taken by each of the payloads orientation systems.  

 These cameras cover an angular area of at least 190 degrees in azimuth and 50 degrees 
in elevation, which is the range of motion of the Sun relative to the payload during float and 
have a max angular error of <1/4 degree. This camera array takes snapshots at a rate of around 
1 picture per minute. 

  Images are stored on the SD card and processed post-flight to determine the location 
of the payload in the Earth’s reference frame, and then these results are compared to 
magnetometer readings at the same timestamp to verify magnetometer measurements.  

 The camera system used is the Camarray-Arducam 1MP Stereoscopic Camera Bundle 
Kit. With an M40160 M12 lens, these cameras have a 118-degree horizontal and 92-degree 
vertical field of view. It attaches directly to the RPi camera module, communicates through 
serial communication, and has an input voltage of 3.3V, which was supplied by the Rpi. 

4.2.1.4. Environmental Monitoring System 

 This system includes internal and external temperature sensors to help monitor the 
health of main electrical components. Three temperature sensors are placed inside the main 
payload box and two are placed inside the electronics box on the boom. 

 We used AD22100 temperature sensors that have a 200° C temperature span, where 
the output voltage is proportional to the temperature varying from 0.25V at -50°C to 4.75 at 
150°C at a single +5V supply. Though we do not expect to see temperatures as high as +150°C, 
no attenuation circuity is needed for the application of these sensors unless we want very 
precise temperature data, which in this case is not of high importance. These sensors also 
feature built in signal conditioning designed to eliminate the need for linearization circuitry or 
trimming. In addition to the built-in signal conditioning, the temperature monitors also include 
external signal conditioning including filtering out high frequency noise and analog-to-digital 
signal conversion. 
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4.2.2. Sensor Interfacing  

 The main system that required sensor interfacing was the Environmental Monitoring 
System. This system contains five temperature sensors (AD22100s) that are used to monitor the 
internal temperature of the payload for each of the main electrical components. Each sensor 
was connected to an RC low pass filter between its output voltage pin and a designated analog 
input pin of ADC2 (MCP3208). This low pass filter is simply a technique used to reduce noise by 
attenuating high frequency signals. The ADC then converts the input analog signal to a digital 
signal to be read by the Raspberry Pi (Refer to control electronics section for all ADC pin 
connections). 

 The Mag648 magnetometer also requires analog-to-digital conversion using the 
MCP3208 ADC. Other than this, no other signal conditioning is needed with the 
magnetometers. 

4.2.3. Control Electronics 

 The central component of the COMPASS control system is a Raspberry Pi 4 Model B 
(8GB RAM) microcontroller. The RPi4 has various interface options responsible for 
communicating with each of the major system components to receive and transmit data. In 
addition, there is another microcontroller, an Arduino Mega 2560, on the boom that is 
responsible for collecting data from the external orientation system components and 
communicating this data to the control system on the main payload using the necessary serial 
communication.  

 Also included in the control system are two 12-bit ADCs (MCP3208), each with up to 8 
input channels for analog-to-digital conversion between the Rpi and any analog devices used. 
There is also an ADC level shifter connected to the output of the ADC to step down from 5V to 
the RPi’s 3.3V logic.  There is also an onboard SD card to store data as well as two RS-232 level 
shifters to convert between RS-232 and CMOS-UART logic for communications with the HASP 
interface and the electronics on the boom. 

 The last component of the control system is the NEO-M9N GPS Module by Sparkfun 
which can operate at a maximum of approximately 262,500ft and can also mate with the 
Sparkfun SMA GPS antenna that includes an onboard low noise amplifier. To use this GPS 
module, we drilled a hole through the payload cap so the antenna can be mounted outside of 
the payload box. The onboard GPS was sampled at the same rate as the magnetometer to 
correlate GPS and magnetometer readings. In addition, we planned on requesting HASP GPS 
data periodically (at a slower rate than the onboard GPS) for redundancy. 
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4.2.4. Power  

 COMPASS is supplied ~+30V by the HASP interface system and has its own power 
regulation system to regulate the required voltage going to each of its components. On the 
bottom shelf of the main payload, the power subsystem consists of two DC-DC converters that 
step down the +30V into two output voltages, one to +5V and the other to +12V. The +5V line  
powered the temperature monitors on the same shelf, as well as the USB-C breakout board 
that supplies +5V to the RPi. The +12V line directly powers the Arduino (on the boom), both 
magnetometers (one on the same shelf and one on the boom), as well as the +5V reference 
chips (one on the boom and one on the top shelf).  

 The RPi4 on the top shelf of the main payload is supplied +5V from a USB-C cable 
connected to the USB-C board from the bottom shelf.  The RPi has its own voltage regulation 
system including +5V and +3.3V voltage regulators. The +5V line provides power to both ADCs, 
the 5V-3.3V logic level shifter and the MAX232 level shifter. The +3.3V line supplies power to 
the accelerometer, camera system, GPS, NS-RS232 level shifter, and the 5V-3.3V logic level 
shifter. 

 In addition to the +5V reference and magnetometer on the boom, the Arduino Mega is 
powered by +12V line running from the main payload to the boom. The Arduino also has its 
own onboard +5V and +3.3V voltage regulators that power +3.3V to the accelerometer, and 
+5V to the temperature monitors, ADC, and MAX232 level shifter. 

 The P78xx-2000 series offers step-down switching regulators at +5V/+12V that can 
operate at a maximum input of 36Vdc and supply up to 2A of output current. We currently have 
access to a custom converter board, the “Murata DCDC,” that is designed for the Murata 
LM7805 and LM812 converters. However, they do not supply enough current output that we 
need to satisfy our power requirements, so we switched these out for the P7805 and P7812 
converters that meet out power requirements.  

 To ensure that the DC-DC voltage converters operated properly in a low-pressure 
environment, vacuum testing was conducted on both the 12V and 5V converters. Based on the 
expected current draw of the payload components, a unique resistive load was applied to 
either converter for 30 minutes while they were under vacuum conditions. This was to ensure 
that the converters did not overheat, as well as to get an idea of how vacuum conditions affect 
their efficiency. From this testing, we found that the converters operated for the whole 
duration without overheating, even while bearing loads larger than what the payload 
components provide. However, a decreased converter efficiency (compared to the datasheet) 
was recorded in the vacuum chamber; it was found that the 5V and 12V converters had 
efficiencies of 80% and 86% respectively when using the expected payload power consumption. 

 One issue we encountered with the power design, was that the maximum start-up 
current specified in the datasheet for the Bartington magnetometers is 400mA, which is just 
barely under the maximum current limit our payload can exceed. Thus, we had to test what the 
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actual start up current of these magnetometers were to make sure they meet the requirements 
of our total power budget. To test the inrush current, we simply connected a 5ohm resistor 
between a +12V power supply and the voltage input of the magnetometer. Using an 
oscilloscope, we measured the voltage drop across the resistor immediately after we flipped 
the power on to the magnetometer. The measured voltage drop across the resistor was about 
100mV, which (using Ohms law) means the startup current was about 20mA. This value is very 
low compared to the maximum current draw specified in the datasheet therefore we were able 
to conclude that it won’t have a damaging effect on our payloads total power consumption. The 
steady state current draw of the magnetometer was also measured, but by using an ammeter 
instead of an oscilloscope. The current draw came out to be as little as 3uA which did not have 
much of a significance to our power budget. This board also includes voltage monitoring circuits 
that communicate with the analog pins on the EDAC pin to make sure the converters are 
providing stable power.  

 There is also a series of logic level N-channel MOSFETS (PSMN022) that controlled the 
powering on/off of different electronic components. MOSFETs are actually just transistors that 
act as power ‘switches’ and were commanded by the control system to switch power on or off 
to the designated electrical component when/or if necessary. 

 

4.3. Software Design 
4.3.1. Flight Software  

 Because COMPASS utilized two separate microcontrollers, these microcontrollers both 
had their own software routines. However, they also needed to be synced up and made to take 
data simultaneously. The following two sections detail how the in-flight software worked on 
both the main payload and the boom payload.  
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4.3.1.1. Main Payload 

 

Figure 4: : High-level diagram of the main payload flight software on the main payload Raspberry Pi. Detailed block diagrams of 
each subroutine are found in Appendix C. 

Once the main microcontroller has booted, all devices controlled by the power 
MOSFETS are activated (GPS, magnetometers (x2), and Boom microcontroller (Arduino Mega)). 
Serial ports are also opened, and the GPS module is configured to output GGA and RMC strings. 
The accelerometer was also configured via I2C. At this point, the main microcontroller finishes 
start-up procedures and enters its main loop.  

In order to maintain absolute timing accuracy relative to GPS time, the main 
microcontroller maintains an interrupt that counts the number of pulses received from the GPS 
module. Once a satellite lock is attained, the GPS module begins outputting a very accurate (+/- 
60 ns) 1-second pulse. The rising edge of this pulse triggers the above interrupt and increment 
the pulse count by 1.  

The main microcontroller begins the top of its loop by reading the contents of the UART 
for the HASP serial connection. This subroutine checks if byte characters are available in the 
UART and appends them to an empty command string. This action continues until either a line 
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feed <LF> character is reached (signaling the end of the command), or the subroutine has gone 
on for a reasonable amount of time without receiving a new character and times out. 
Completed commands are added to the commanding queue and will be executed in the next 
step. If there are commands in the commanding queue, the Command Execution subroutine 
will attempt to execute them until there are no more queued commands. First a command is 
extracted from the queue and is verified to be a complete and valid command. Once verified, 
the command will be compared to commanding table (vector table) and used to look up to 
matching function call. Once the matching function is executed and presents a return value, the 
command status will be updated with either “DONE” (successful execution) or “FAIL” (execution 
error or failure. Once the commanding queue is empty, the main microcontroller approaches 
the synchronization phase.  

         To ensure the timing accuracy of 0.5s, a synchronization between the main and boom 
microcontrollers is necessary. First a “SYN” request consisting of the following: 

 

SYN<Unique Identifier (Current GPS Pulse count)>,<system time> 

 

is sent from the main microcontroller. Upon receiving the synchronization packet, the boom 
microcontroller updates its GPS pulse count and records the synchronization attempt; 
responding with an acknowledgment packet, which consists of the following: 

   

ACK<Unique Identifier (Matching GPS Pulse count),<local millisec.> 

 

           Upon proper receipt of the matching acknowledgement to the synchronization attempt, 
the main microcontroller enters the sensor polling phase. However, if an incorrect ACK is 
received, or the synchronization attempt times out without receiving an ACK, the main 
microcontroller attempts to synchronize again. If the synchronization fails 10 times, given the 
simplicity of the network, it is reasonable to assume that the synchronization is currently 
impossible. The main microcontroller must move on to the sensor polling phase. The Boom 
microcontroller times out at approximately the same time and begin its own asynchronous 
sensor polling. 

             The main microcontroller has a 180s (3-minute) sensor polling phase. At a rate of 2 polls 
per second, this amounts to 360 data entries. At the beginning and end of each sensor poll, the 
start and end time are recorded. These are used to calculate how long the routine should pause 
between each sensor polling, such that each poll occurs 500 milliseconds apart. This also helps 
ensure that each sensor poll was in fact less than 500 milliseconds long. The GPS pulse count is 
updated by the GPS Pulse Counter interrupt subroutine while the latitude, longitude, altitude, 
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and timestamp are gathered. At the end of the 360 data entries, the main microcontroller goes 
on to take an image. An image is taken at the end of every 3 minutes polling phase. The 
beginning and end time of the picture are recorded to ensure the timing accuracy of 0.5s. This 
image should be taken 0.5s of the last sensor poll. 

 To verify that the boom microcontroller is functioning and recording data as expected, 
the main microcontroller was scheduled to request the last data entry recorded by the boom 
microcontroller. A data request is sent, and if the request receives no reply or a garbled reply, 
will re-send the data request. Given the simplicity of the network, if a data request fails 10 
times, the main microcontroller gives up on requesting data during the current call to the data 
request subroutine.  

 The data up to this point is currently stored in volatile memory. To preserve the data 
through failure or shutdown, the data must be written to non-volatile storage. The reason for 
waiting to write data to storage until this moment was to ensure the timing accuracy. The files 
are created with the appropriate names. Once saved, the last data entry containing data taken 
by both main and boom microcontrollers is copied to the variable “data_to_downlink” and 
passed to the downlink subroutine. 

 The last phase in main loop of main microcontroller is to transmit the latest orientation 
data recorded. This telemetry packet is used to verify that all components are working as 
intended and that all command received were executed properly. More detailed block diagrams 
of each individual subroutine are included in Appendix C.  
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4.3.1.2. Boom Payload  

 

Figure 5: High-level block diagram of software running on boom payload during flight. 

The main function of the boom microcontroller is to wait for a synchronization attempt 
and respond with an acknowledgement. After waiting an appropriate amount of time, if the 
boom microcontroller fails to receive a sync attempt, it “assumes” that the serial connection to 
the main payload has failed and thus, will go on to the sensor polling routine. At a rate of 2 
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sensor polls per second over a 180s polling period, this amounts to 360 data entries.  At the 
beginning and end of each sensor poll, the start and end time are recorded. The start and end 
time are used to calculate how long the routine should pause between each sensor polling, 
such that each poll occurs 500 milliseconds apart. 

4.3.2. Payload Commands  

 The main types of commands created for COMPASS were commands used to power on 
and off different components in case they malfunctioned during flight and needed to be reset. 
The commands used are shown in the table below, and more detailed flowcharts of the 
command subroutines are included in Appendix C.  

 

Table 1: Commands used to change the state of sensors on COMPASS in flight. 

4.3.3. Data Storage and Downlink  

 Both microcontrollers used included their own SD cards used to store data taken during 
flight, and example data entries are shown in Appendix J. Sets of 360 of these entries were 
taken and then recorded on each SD card.  

 The information downlinked every 3 minutes was essentially the boom payload data 
entry at the end of a polling session appended to the main payload data entry at the end of a 
polling session. An example of downlinked data is also shown in Appendix H.  

4.4. Mechanical/Thermal Design 
4.4.1. Main Payload 

 The main payload housing was designed to contain and protect all internal components 
of the payload from atmospheric conditions. The payload frame was constructed of 20mm 
extruded aluminum, and the walls of the payload were made of aluminum sheets that were 
painted white for thermal regulation. The payload cap was also designed as a mount for the 
two cameras that would be used to image the Sun, and this mount was 3D printed out of ABS 
plastic. The exterior of the main payload is shown in the figure below.  
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Figure 6: Dimensions and design of main payload exterior. Shown mounted to payload plate. 

 The main payload interior consisted of 2 shelves that contained the electronics and 
sensors of the payload. The top shelf included the Raspberry Pi and the attached cameras, 
which were fed through the payload cap into the mount. The interior structure of the payload is 
shown below. More detailed drawings of specific parts of the main payload design are shown in 
Appendix D, and a detailed weight budget of both payloads can be found in Appendix E.  

 

Figure 7: Interior structure of the main payload that shows the shelves the arrangement of electrical components on these 
shelves. 
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4.4.2. Boom Payload  

 The boom payload was offset from the HASP gondola using a 96” fiberglass boom. 
More detailed diagrams and drawings of how the boom was attached to the main payload can 
be seen in Appendix D, and the boom stress test that was completed to ensure that the boom 
would survive flight is shown in Appendix F. The boom payload components were enclosed in a 
plastic electronics box that was attached to the end of the boom as shown in the figure below.  

 

Figure 8: Interior of the boom payload and arrangement of boom payload components. 

4.4.3. Thermal Design 

 COMPASS was designed with the expectation that the payload would encounter 
ambient temperatures from -30°C to 45°C according to the HASP Call for Payloads document. 
The different operating temperatures of the major system components were taken into 
account and tested to ensure that they would perform under flight conditions. In addition, the 
payload was constructed out of polished aluminum that was painted white on the outside to 
insulate the interior components. The white exterior would reflect visible light from the Sun, 
and the polished exterior would reflect internal heat from the components.  

 The Raspberry Pi 4 we tested specially in the thermal/vacuum chamber multiple times 
because the data sheet specified operating temperature range did not fit the range of 
atmospheric temperatures required. However, after multiple vacuum tests, the Pi 4 did operate 
as required and neither froze nor overheated and throttled CPU speeds when running a 
program designed to put stress on the CPU. Overall, no major issues related to thermal 
regulation occurred during testing or during flight.  
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5. Integration 

     On July 23rd 2021, the COMPASS team traveled to Palestine, TX to integrate the payload 
with HASP. During integration week, there were two thermal/vacuum tests performed to 
determine if the payload was ready for flight. Before being integrated with HASP for the first 
test, the team assembled the payload and checked that all commands worked properly. Once it 
was determined that the commands worked and any bugs were fixed, COMPASS was placed on 
HASP for the first test. 

The first thermal/vacuum test took place on July 28th, 2021 and began at 9:26 am local time. 
During the tests, we monitored the health of the payload by plotting the downlinked data and 
determining if there were any issues during the tests. We also sent commands to our payload 
such as turning the boom payload off and then back on, turning the main payload 
magnetometer off and then back on, and turning the GPS off and then back on. We also tested 
all of the reset commands. We determined that these commands successfully worked based on 
what we saw in the downlinked data. The main issue we saw during the first test was that the x-
component of the main payload magnetometer readings spiked seemingly at random. To fix 
this issue, we made sure to secure the magnetometer inside the payload and also double 
checked that we were downlinking and saving the correct data. The only other fix that was 
made between the two tests was securing the DB9 that connected the boom payload to the 
main payload better. The plots from these tests are included below.  

 

Figure 9: This plot shows the magnetometer readings taken during integration on the first thermal/vacuum test day (7/28/21) 
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Figure 10: This plot shows the accelerometer readings taken during integration on the first thermal/vacuum test day (7/28/21) 

 

Figure 11: This plot shows the temperature data taken during integration on the first thermal/vacuum test day (7/28/21) 
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 One of the other interesting features we saw from the plots from the first day of 
integration was the acceleration increasing in the x component and decreasing in the y 
component with what appears to be low temperatures because these times corresponded to 
the same times that the vacuum chamber was cooled.  

During the second test on July 30th, 2021, the magnetometer did not exhibit the same issues 
and everything else was running as expected. However, we did still see the temperature 
dependence feature of the accelerometer. After the second test, the payload was packed up to 
be sent with HASP to Ft. Sumner, NM for flight.  
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6. HASP Flight  

 The HASP flight took place on September 14, 2021. HASP was launched at 14:03 UTC. 
During ascent, the boom payload SD card initialization flag showed that the SD card was not 
working, so the COMPASS team tried resetting the entire boom payload (using the boom reset 
command) to remedy this. This appeared to work for a few datasets but then it went back to 
saying the SD card was not initialized. The COMPASS team power cycled the payload at around 
15:35 UTC to see if that fixed the SD card issue. When this did not work, the team decided to 
just keep running without the boom payload SD card data because boom data was still being 
downlinked correctly. HASP reached float at 15:53 UTC.  

 The GPS also stopped sending data at around 14:29 UTC, at an altitude of around 
11,000 meters. The GPS kept sending time and date information, but no location or altitude 
information. However, HASP took GPS data during flight as well, so we still ended up with 
usable GPS data.  

 Apart from these two issues (which are discussed in greater detail in the next section), 
COMPASS took data and downlinked it as expected for the rest of the time it was powered on. 
It also continued to take images during flight. Because our payload depended on seeing the 
Sun, we shut it off after the Sun set because there was no point in taking data afterwards. Our 
payload was shut off around 2:06 UTC on September 15th, but HASP itself was not terminated 
until 6:03 UTC. This gave COMPASS around 10 hours and 13 minutes taking data at float, while 
the total HASP float time was 14 hours and 10 minutes. HASP landed in northeast Arizona at 
6:46 UTC for a total flight time of 16 hours and 44 minutes.  

 A flight timeline is included below.  

UTC Time Event 
9/14/21 14:03 Launch 
9/14/21 14:29 GPS stopped 
9/14/21 15:35 COMPASS Power off 
9/14/21 15:41 COMPASS power on 
9/14/21 15:53 Float 
9/15/21 2:06 COMPASS power off 
9/15/21 6:03 HASP flight terminated 
9/15/21 6:46 Impact 

Table 2: This table shows the timeline of COMPASS' flight on September 14th/15th 2021. 
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7. Data Analysis and Results  
7.1. Image Analysis  

 COMPASS took a total of 250 images during the flight. The Sun was seen in 90/250 
images from the right camera and 50/250 images from the left camera, for a total of 119/250 
images where the Sun could be seen in either one or both cameras. The camera system took 
images simultaneously with both the left and right camera, but the images were exported 
stitched together as one file, as shown below. Because of the way the cameras had to be 
mounted, the images were also upside down.  

 

Figure 12: An example of the images taken with the cameras in flight. The red line divides the image into the pictures from the 
left and right cameras. The yellow circle shows where the Sun is in this picture. 

 In addition to the Sun, the above image contains a distorted reflection of the cameras 
themselves on the solar filter. This was because the solar filter was not completely flat against 
the filter mount. This was not a problem for our analysis however, because we were able to 
subtract the background of the images by altering the brightness threshold of the image and 
only keeping pixels that were a certain brightness (in this case, the brightness of the Sun). Once 
the background was subtracted, we used the Hough Gradient Method circle transform (using an 
OpenCV Python function) to detect circles and to obtain the pixel coordinates of the center of 
the Sun in these images. The pixel area of the Sun was around ~50.3 square pixels. The below 
images show the left half of the image before and after the background subtraction was 
performed.  



26 
 

 

Figure 13: A camera image before and after image processing. This image processing included subtracting the background of 
the images and also rotating the image 180 degrees. 

7.2. Raw data 

The payload took data for the whole time it was on during flight. The following plots are the 
plots of the data downlinked during flight. 

 

Figure 14: This plot shows the magnetometer readings taken during the flight 
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Figure 15: This plot from the accelerometer readings during flight. 

.  

 

Figure 16: This plot shows the temperature of the different components with temperature sensors during flight. 
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 The main thing to note from these plots is the increase in the x component of both 
accelerometers that happened when the temperature dipped during flight. This was the same behavior 
seen during integration. 

 

7.3. Azimuth and Elevation of Payload  
7.3.1. Coordinate systems 

To continue the description of the analysis, an understanding of the coordinate axes of each 
of the components and each of the frames of reference being rotated between is necessary.  

Magnetometer axes:  

 The coordinate axes of the magnetometer were labeled as shown in the picture below. 
When looking at a top-down picture of the payload, the magnetometer x component is pointed 
down the pae, the z component is pointed to the right, and the y component is pointed into the 
page. The cameras are pointing in the negative x direction in this coordinate system. The main 
payload and boom payload magnetometers were oriented the same way, so this applies to 
both.  

 

Figure 17: This picture shows the coordinate axes of the magnetometers on the payload. 

Accelerometer Axes:  

 When looking at a top-down view of the payload where the cameras are pointing up: 
the accelerometer x component is pointed up the page, the y component is pointed to the 
right, and the z component is pointed into the page. The accelerometers were oriented the 
same way on both payloads as well.  
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Camera Frame Coordinate system:  

 The camera coordinate system is shown in the image below.  

 

Figure 18: These pictures show the coordinate axes of the cameras/camera mount. 

 When looking straight at either of the cameras, the x component is to the right, the y 
component is up the page, and the z component is out of the page. This is because the cameras 
are upside down in the camera mount.  

Earth Frame coordinate system:  

 The coordinate system of the Earth frame used in this data analysis is North, East, and 
Down.  

Payload Frame coordinate system:  

 When looking at a top-down view of the payload, the x component of the payload frame 
is up the page, the y component is to the right, and the z component is down.  

Using the magnetometer and accelerometer measurements, we were able to calculate the 
azimuth and elevation of the payload pointing vector (aka the orientation of the payload in the 
Earth frame). To do this, we used IGRF readings that correspond to the latitude, longitude, and 
altitude of each magnetic field/acceleration reading. Because the GPS we put on COMPASS 
stopped working mid-flight, we used the HASP GPS measurements to obtain the IGRF readings. 
Once these were obtained, we found rotations between the expected IGRF values/expected 
gravitational acceleration and the magnetic field/accelerometer readings we measured with 
our payload. This was done using a SciPy implementation of the Kabsch algorithm (called 
scipy.spatial.transform.Rotation.align_vectors) that aligns sets of vectors in two different 
frames. This put the magnetometer readings in the Earth frame. These rotations were then 
applied to the vector defined to be the payload’s “pointing vector” ([1, 0, 0] in the payload 
frame) to get the payload pointing vector in the Earth’s reference frame. 
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Figure 19: The payload "pointing vector" is shown in white. The goal of this payload is to find the orientation of this vector. This 
vector corresponds to the negative x direction of the magnetometers as they were oriented on both the payloads.  

 The resulting payload pointing vectors were in the components North, East, and Down. 
We then converted these vectors into azimuth and elevation to compare the payload’s azimuth 
and elevation to the azimuth and elevation of the Sun at the same time. These calculations 
were done using the main payload data and then also the boom payload data, and a 
comparison of the two can be seen in the next section.  

 

7.4. Azimuth Comparison Results  

The following results comparing the calculated pointing vector to what we expect only 
compare the azimuth measurements, not elevation measurements. This is because we do not 
have expected elevations of the payload, but we do have expected rotation rates of the 
payload based on previous flights. Because azimuth is a measure of the angle swept from 
North, the azimuth of the payload corresponds to the rotation of the payload.  
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Figure 20: This plot shows the azimuth of the payload pointing vector with time. The main payload is shown in blue and the 
boom payload is shown in orange. The time at which HASP reached float is denoted by the dashed red line. 

 In the above plot, the boom payload has fewer data points because we were only able 
to save what was downlinked during flight because the boom payload SD card stopped working 
towards the beginning of the flight. At the beginning of the flight, the azimuth jumps up and 
down very quickly, and then becomes more gradual after reaching float (denoted by the dashed 
red line). This type of rotation is what we expect based on previous flights and the videos that 
were taken during flight. A more detailed view of the main payload rotation rates are shown in 
the next plot.  
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Figure 21: This plot shows the rotation rates calculated at different times during the flight- before launch, during ascent, and at 
float. 

 This plot shows the rotation rates of the payload at different periods during the flight- 
before launch, on ascent, and at float.The differences in rotation rates between these time 
periods makes sense with what we know is happening to the payload at these times based on 
previous flights and flight video. All of the rotation rates before launch are very random and 
correspond to HASP being moved around and situated on the launch vehicle. During ascent, the 
payload rotates somewhat quickly, however, once it reaches float, the rotation does not exceed 
around 7 degrees/second. This is consistent with what we would expect based on the flight 
videos from past flights.  

 While the boom payload data points appear to follow the main payload data points in 
Figure 9, this is not exactly the case, as shown by the next plot.  
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Figure 22: This histogram shows the frequency of the differences in azimuth angle between the pointing vector as calculated by 
the main payload data and calculated by the boom payload data. 

 The differences between payload azimuth calculated using boom data and payload 
azimuth calculated by main payload data range from less than 5 degrees to over 40 degrees. 
There also does not appear to be a very Gaussian relationship in the difference of the payload 
measurements, so there’s no average difference we can use to correct between the two. To 
determine which is actually more accurate, these measurements need to be compared to the 
Sun’s actual position, and more analysis must be done to make this comparison.  

 Despite the differences between the main payload and boom payload azimuths, we can 
verify that we are on the right track and that our azimuth measurements are not completely off 
using the data we have from the cameras.  
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Figure 23: This plot shows the differences between the azimuth of the payload pointing vector and  the actual azimuth of the 
Sun. The orange bars are times when we have images containing the Sun, and the blue bars show the set of all images. 

 The plot above shows the differences between the azimuth of the payload pointing 
vector and the actual azimuth of the Sun. The payload azimuths for this plot were calculated 
using main payload data. This plot serves as a sanity check because it tells us that we only see 
the Sun in our images when the difference between our calculated pointing vector azimuth is 
less than 100 degrees different from the actual Sun azimuth. This type of cut off is what we 
would expect based on the field of view of the wide-angle camera lenses we used. It also tells 
us that we do not see the Sun when the difference between the two angles is 180 degrees, 
meaning, as expected, we don’t see the Sun when it’s directly behind the front of the payload.  

7.5. Improvements/Future Work 

There are a few improvements that could’ve been made on this payload before flight. For 
one, the SD card on the boom should have been secured better so that we could’ve had a full 
dataset for both the main payload and the boom payload. The SD card never stopped working 
during bench testing or integration. Based on the data that was still on the SD card from 
previous times the payload had been turned on, the last time the SD card was saving data was 
actually very early in the morning on September 8th, the attempted (but scrubbed) flight date. 
However, we were unaware that this was an issue until HASP was already on the launch vehicle 
on September 14th because the SD card flag in the downlinked data was still saying the SD card 
was initialized, so the flag also did not work as planned. The flag in the downlinked data 
probably could have been tested more thoroughly as well. We still ended up with downlinked 
data from the boom, but it was not as complete of a set as we had planned on having.  
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The GPS stopped sending data mid-flight. Because we were only downlinking the parsed 
data and not the raw NMEA strings, it was unclear if this was from not having a fix or an issue 
with the range setting of the GPS. We think it was probably that the range was not set correctly 
because there should not have been a reason to lose a fix during flight, and because it was still 
sending time and date information, it was still on. This could’ve been prevented by reading the 
documentation more clearly. It ended up not being too much of an issue because we were able 
to use HASP GPS data, but it was definitely preventable. The other improvement that could’ve 
been made was securing the solar filters better to prevent any light from leaking in and causing 
the distorted camera reflections on the images. This did not end up being too much of a 
problem, however, because we were able to subtract the background of the images. 

There is also more analysis that needs to be done on the collected data to fully achieve the 
goals of this payload. While we were able to verify that the magnetometer and accelerometer 
give results that make sense qualitatively (i.e. the rotation rate plot and the plot comparing the 
pointing vector to camera images), much more rigorous analysis needs to be done to 
quantitatively identify how far off our calculation of the Sun’s azimuth and elevation would be 
compared to the actual Sun’s azimuth and elevation. To characterize the difference between 
our calculation of the Sun’s azimuth and elevation and the actual Sun azimuth and elevation, 
the camera pixel vector needs to be rotated into the Earth frame (using rotation matrices found 
with the magnetometer/accelerometer readings) and then the differences between this vector 
and the Sun’s vector in the Earth frame need to be compared. Once this is done, we can figure 
out how well our orientation system of the magnetometer and accelerometer work to orient 
the payload in space.  

The differences between the boom payload and the main payload can also be quantitatively 
analyzed. The reason for having a payload on a boom in the first place was to determine if 
magnetic fields coming from other payloads/HASP electronics had an effect on the onboard 
magnetometer and would skew our results. To characterize the differences between the boom 
payload and main payload orientation systems, one must first be able to compare the 
differences in calculated azimuth/elevation and actual azimuth/elevation of the Sun (as 
described in the above paragraph). This must be done with both payloads and then the 
differences between the two payloads can be characterized.  

The effects of the temperature dependence of the magnetometer can also be characterized 
by comparing the error in the calculated azimuth and elevation of the payload at times when 
the accelerometer is fluctuating and when it is leveled off.  
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8. Demographic Information 

Name Start 
Date 

End 
Date 

Role Student 
Status 

Race Ethnicity Gender Disabled 

Jeanne 
Garriz 

9/15/20 Present Project 
manager/Mechanical 

Undergrad White Non-
Hispanic/Latino 

Female No 

Sabrina 
Huezo 

9/15/20 Present Electrical Lead Undergrad 
 

White Hispanic Female No 

Harrison 
Gietz 

12/1/20 10/1/21 Software/Mechanical 
secondary 

Undergrad White Non-
Hispanic/Latino 

Male No 

Jesse 
Frank 

12/15/20 10/1/21 Software lead Undergrad White Non-
Hispanic/Latino 

Male No 

Aaron 
Ryan 

9/15/20 Present Faculty advisor Staff White Non-
Hispanic/Latino 

Male No 

Table 3: Demographic information on the COMPASS Team members. 
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Appendix A: Power Budget 

Arduino Power Consumption 
COMPONENT OPERATING 

VOLTAGE 
(V) 

UPPER 
LIMIT 
CURRENT 
DRAW (mA) 

Method POWER 
CONSUMED 
(W) 

UNC. (W) 

Accelerometer 5 1.3 Measured <1 ±0.01 
Environmental 
sensors 

5 ~2 Estimated <1 ±0.01 

Bare-board 
Arduino Mega 

12 200 Datasheet 2.4 ±0.24 

TOTAL  203.3  4.4 ±0.3 
Table 4: This table shows the power consumption of the bare board Arduino Mega and also the parts that were powered 

through the Mega. 

 
12V Power Budget 

COMPONENT OPERATING 
VOLTAGE (V) 

UPPER LIMIT 
CURRENT 
DRAW (mA) 

Method POWER 
CONSUMED (W) 

UNC. (W) 

Arduino Mega (includes 
load of accelerometer, 
temperature sensor, and 
Active Bare-Board Mega) 

12 203 Estimated 2.44 ±0.25 

Magnetometers 12 40 Measured 0.48 ±0.05 
+5V Voltage Reference 12 ~1 Estimated <1  
TOTAL  244.3  2.9 ±0.3 

Table 5: Power budget for all electronics connected to the 12V supply from the P7812-2000-S converter. 
These are the electronics that were housed on the boom. 

 
Raspberry Pi Power Consumption 

COMPONENT OPERATING 
VOLTAGE 
(V) 

UPPER LIMIT 
CURRENT 
DRAW (mA) 

Method POWER 
CONSUMED (W) 

UNC. (W) 

Camera System* 3.3  97 Estimated 0.32 ±0.03 
Rasp Pi Active Bare-
Board 

5 530 Measured 2.65 ±0.27 

GPS Module 3.3 43 Measured 0.14 ±0.01 
Accelerometer 3.3 1.3 Measured <1 ± 0.01 
RS-232 Level Shifters 3.3 1 Datasheet <1 ± 0.01 
ADCs 5 <1 Datasheet <1 ± 0.01 
TOTAL  672.3  3.1 ±0.3 

Table 6: The maximum power to be used from the Raspberry Pi and the loads it carries. 
 
*Power consumption could not be found for the intended camera system, so it was estimated using a similar single 
0.36MP camera. It is likely that the actual current draw will be larger than this estimate, as two cameras will be used 
on COMPASS. 
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5V Power Budget 
COMPONENT OPERATING 

VOLTAGE(V) 
UPPER LIMIT 
CURRENT DRAW 
(mA) 

Method POWER 
CONSUMED(W) 

UNC. 
(W) 

RPi4 Model B (includes loads of 
GPS, Camera System, 
Accelerometer, and Active Bare-
Board RPi) 

5 672.3 Measured 3.36 ±0.27 

Environmental sensors 5 ~2 Estimated 0.01 ±0.05 
TOTAL 

 
673.3  ~3.4 ±0.3 

Table 7: Power budget for all electronics connected to the 5V supply from the P7805-2000-S converter. These are the 
electronics that were housed on the main payload mounting plate 

 
Power Consumption of DC-DC Converters 

COMPONENT Voltage 
Out (V) 

Current 
Out Max 
(A) 

Power 
Out Max 
(W) 

Efficiency 
(%) 

Power In 
Max (W) 

Power 
In Max 
Unc. (W) 

Current 
in @30 
V (A) 

P7812 
Converter 

12 0.244 2.9 86 3.37 ±0.34 0.11 

P7805 
Converter 

5 0.673 3.4 80 4.25 ±0.43 0.14 

TOTAL 
(entire 
payload) 

    7.62 ±0.77 0.25 

Table 8: Current and power consumption information for the DC-DC converters, and the total power 
consumption of the COMPASS payload (given in the bottom right). 
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Appendix B: Detailed Electrical Diagrams 

 

 

 

 

 

 

 

 

Figure 24: This diagram shows the orientation system that was 
housed in the main payload. It utilizes the Mag648 and the 
LSM303AGR Accelerometer. 

Figure 25: This diagram shows the external orientation system that was 
housed at the end of the boom. It used the same 
magnetometer/accelerometer combination as the internal orientation 
system. 

Figure 26: This diagram shows how the camera system is connected to 
the RPi and the rest of the payload. 
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Figure 27: This diagram shows the connections between the 
temperature sensors and the ADCs they are connected to. 

Figure 28: This circuit diagram shows the suggested low-pass 
filter for the temperature sensors. 

Figure 29: This figure shows how the Raspberry Pi controls the rest of the payload. 
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Figure 30: This figure shows the detailed schematic of communication pin connections between 
the between the components of the control system on the main payload. 

Figure 31: This figure shows the detailed schematic of the communication pin connections 
between the components of the boom payload. 
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Figure 32: This figure shows how power connects from HASP to all elements of the bottom 
shelf of the main payload. 

Figure 33: This diagram shows how power gets from HASP to components on the top 
shelf of the main payload. 
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Figure 34: This diagram shows how power gets to all components of the boom payload. 

Figure 35: This detailed circuit diagram shows in depth how the power converter board works to supply 
power from HASP to the COMPASS payload and what electrical components are used. 
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  Figure 36: Diagram of the power regulation system that controls the 
different components that were able to be turned on and off. 
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Appendix C: Software Flowcharts 

1. Main Payload Flowcharts: 

The following flowcharts show the more detailed processes of the subroutines in the main 
payload flight software shown in section 4.3.  

 

Figure 37: High level flowchart for GPS Pulse counter interrupt. 
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Figure 38: Diagram showing the subroutine the main payload calls to read the HASP UART. 

 

Figure 39: Subroutine called by main payload to execute uplinked commands. 
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Figure 40: Flowchart showing the synchronization routine between the main payload and boom payload microcontrollers used 
to maintain timing accuracy. 

 

Figure 41: Main payload sensor polling routine showing the order in which sensors are polled. 
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Figure 42: Shows subroutine that polls GPS and parses received NMEA strings 

 

Figure 43: Subroutine used by main payload to take images of Sun. 
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Figure 44: Subroutine used by main payload to request data from the boom payload. 

 

Figure 45: Subroutine used to save data to SD card on main payload 
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Figure 46: Subroutine used to downlink data from the main payload to the ground during flight. 

2. Boom Payload Software  

 

Figure 47: Shows sensor polling order of the sensors on the boom payload. 
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Appendix D: Detailed Mechanical Drawings  

 The following figures are more detailed mechanical drawings that expand upon the 
general drawings from section 4.4. All dimensions in these drawings are in inches. 

1. Main Payload Drawings 

 

Figure 48: Mechanical design and dimensions of the camera mount/payload cap. 

 

Figure 49: Dimensioned drawing of sheet metal side panels (left) and electronics mounting shelves (right). 
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Figure 50: Main payload frame. 

2. Payload interface to HASP 

 

Figure 51: HASP mounting plate and locations of COMPASS frame relative to it. 
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Figure 52: Diagram showing where the boom was placed relative to the HASP gondola and the main payload. 

3. Boom/Boom Payload Drawings 

 

Figure 53: Arrangement of components of the boom and placement of external orientation system on the boom. 
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Figure 54: How sections of the boom were arranged and connected. 

 

Figure 55: Dimensions of boom collar used to connect two pieces of fiberglass that comprised the boom. 

 

Figure 56: Drawing showing construction of boom and how two sections were connected 
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Figure 57: Interior arrangement and exterior dimensions of sensor box. Box lid was held to box by additional fasteners not 
pictured. 
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Appendix E: Weight Budget 

 The following tables are the weight budgets for the main payload, boom payload, and 
boom.  

Main Payload Weight Budget 

Component  Mass (g) Uncertainty 
(g)  

Camera mount 145 ±5 

Camera filters 20 ±5 

Payload walls (including connectors) 265 ±5 

Payload shelves 85 ±5 

Payload frame + bolts + washers 1130 ±5 

screws/standoffs <1 ±1 

RPi + CamArray Hat 85 ±5 

Top shelf circuit board (includes accelerometer, level shifter, and 
GPS MOSFET) 

20 ±5 

GPS + antenna 30 ±5 

Magnetometer 110 ±5 

Power converter board 30 ±5 

Bottom shelf circuit boards  
(includes ADC circuits and MOSFETs, bidirectional level shifter, 
and USBC breakout board) 

55 ±5 

Wiring 30 ±5 

TOTAL:  2006 ±17 
Table 9: Total measured weight budget of the main payload. 
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Boom/Boom Payload Weight Budget 

Component  Mass 
(g) 

Uncertainty 
(g)  

Fiberglass boom 1180 ±5 

Boom collar  280 ±5 

Bolts 100 ±5 

Zip ties 40 ±5 

Boom cable 225 ±5 

Electronics box 480 ±5 

Arduino Due (includes SD card shield with accelerometer and 
temperature sensor circuits)  

55 ±5 

Magnetometer 110 ±5 

Boom circuit boards (includes ADC, 5V reference, and Max232 level 
shifter and bidirectional level shifter) 

45 ±5 

Wires 15 ±5 

TOTAL:  2530 ±16 
Table 10: This table shows the measured weights of all the components making up the boom and the payload that was attached 

to the end of the boom. 
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Appendix F: Boom Stress Analysis 

8 G vertical boom test: 

1. A proof test was conducted on the boom.  

a. First, using the information from the weight budget the load of the 
boom and the sensor box was determined. 

b. Next, that load was multiplied by a factor of 8 to determine the load 
under 8G conditions 

c. Then that load was multiplied by a factor of 1.2 factor of safety to 
determine the desired load for the test. These values are show in the 
table below. 

d. The prototype boom and collar where then attached to the HASP 
frame using the upper payload boom brackets. 

e. Then weight loads were hung from the boom at the center of the 
boom (for the boom itself) and 1 in. from the end of the boom (to 
simulate the sensor box) to simulate the desired load. Note the 
applied load for the boom listed below includes the weight of the 
existing boom. 

f. This load was maintained for 3 min after which the boom was 
disassembled, and the boom sections and collars were inspected for 
any signs of damage. 

 

 Budgeted 
Weight 

8*G Load 1.2 x Margin Applied Load 

Sensor Box 714 gram 5712 gram 6854 gram 6860 gram 

Boom 1540 gram 12320 gram 14784 gram 14790 gram 
Table 11: Weight Loads for 8g vertical proof test. 

 
4G Horizontal boom 

 Budgeted 
Weight 

4*G Load 1.2 x Margin Applied Load 

Sensor box 714 g 2856 g 3427 g 6860 g 
Boom 1540 g 6120 g 7382 g 14790 g 

Table 12: Loads for 4G horizontal proof test 

2. The 4g horizon proof test was conducted in an identical manner to vertical 
test except for the base load being multiplied by a factor of 4 instead of 8 and 
the boom was rotated 90 degrees around its long axis when loaded so that 
the hanging loads would be in the direction of a horizontal load. 
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3. An image of the boom under load during the test is shown below in figure 50. 

ii. Results: 

No failure or damage to the was noted following either test 

 

  

 Figure 58: Boom under load during horizontal proof test. 
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Appendix G: Calibration Data Tables  

1. Magnetometer Calibration 

The following calibration was performed on both magnetometers for the x, y, and z 
components of each. The background magnetic field was taken with a lab magnetometer. Our 
magnetometer was then placed in a Helmholtz coil and the magnetic field was increased in 
each direction. Magnetic field readings from the lab magnetometer were taken and then the 
corresponding ADC values of the positive and negative outputs were taken. The differential 
ADC value was then plotted against magnetic field and the linear relationship was used to go 
between ADC and magnetic field.  

 

Table 13: Example of the data taken from the Main payload X component calibration. This was done for the main payload Y and 
Z components, as well as the X, Y, and Z of the boom payload magnetometer as well. There were a total of 6 tables similar to 

this one. 

 The plots shown below are the plots of the main payload magnetometer calibration, 
with differential ADC on the x-axis and magnetic field on the y-axis.  

 

Background Helmoltz coil mag field corresponding current for Helmholtz coil magnetic field values actual mag field values (uT) Xplus xminus Vxplus Vxminus differential ADC Value differential V mV/uT
16.2 76.2 0.319533166 -60 -61.79 589 2098 0.72 2.56 -1509 -1.84 29.77828

**in up direction 71.2 0.298566423 -55 -56.39 654 2036 0.8 2.49 -1382 -1.69 29.96985
**Assuming coil generates field going up66.2 0.27759968 -50 -49.91 731 1952 0.89 2.38 -1221 -1.49 29.85374
X DIRECTION 61.2 0.256632936 -45 -45.13 791 1892 0.97 2.31 -1101 -1.34 29.692

56.2 0.235666193 -40 -38.04 881 1807 1.08 2.21 -926 -1.13 29.70557
51.2 0.21469945 -35 -35.58 906 1778 1.11 2.17 -872 -1.06 29.79202
46.2 0.193732707 -30 -30.87 966 1719 1.18 2.1 -753 -0.92 29.8024
41.2 0.172765964 -25 -24.95 1040 1646 1.27 2.01 -606 -0.74 29.65932
36.2 0.151799221 -20 -21.3 1084 1604 1.32 1.96 -520 -0.64 30.04695
31.2 0.130832477 -15 -14.25 1171 1519 1.43 1.85 -348 -0.42 29.47368
26.2 0.109865734 -10 -9.33 1228 1460 1.5 1.78 -232 -0.28 30.01072
21.2 0.088898991 -5 -5.42 1276 1412 1.56 1.72 -136 -0.16 29.5203
16.2 0.067932248 0 -0.88 1353 1338 1.65 1.63 15 0.02 -22.7273
11.2 0.046965505 5 6.34 1421 1268 1.73 1.55 153 0.18 28.39117

6.2 0.025998762 10 11.72 1485 1202 1.81 1.47 283 0.34 29.01024
1.2 0.005032018 15 15.55 1535 1155 1.87 1.41 380 0.46 29.58199
3.8 0.015934725 20 21.1 1600 1090 1.95 1.33 510 0.62 29.38389
8.8 0.036901468 25 25.41 1654 1040 2.02 1.27 614 0.75 29.51594

13.8 0.057868211 30 29.67 1707 984 2.08 1.2 723 0.88 29.65959
18.8 0.078834954 35 37.35 1802 891 2.2 1.09 911 1.11 29.71888
23.8 0.099801697 40 40.23 1837 857 2.24 1.05 980 1.19 29.57992
28.8 0.120768441 45 45.76 1902 790 2.33 0.97 1112 1.36 29.72028
33.8 0.141735184 50 49.18 1946 749 2.38 0.92 1197 1.46 29.68686
38.8 0.162701927 55 54.73 2017 679 2.46 0.83 1338 1.63 29.78257
43.8 0.18366867 60 64.91 2135 558 2.61 0.68 1577 1.93 29.73348

y = 0.041x + 0.0177
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Figure 59: These plots show the magnetic field values vs the differential ADC for each component of the main payload 
magnetometer calibration. 

The plots shown below are the plots of the boom payload magnetometer calibration, with 
differential ADC on the x-axis and magnetic field on the y-axis.  

 

 

Figure 60: These plots show the magnetic field values vs the differential ADC for each component of the boom payload 
magnetometer calibration. 
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2. Temperature Calibration 

The temperature calibration was a bit difficult to do physically because of how short the 
wires on the temperature sensor were. However, we took as many measurements as 
possible for the 3 main payload temperature sensors and then averaged the slope and 
intercepts of the lines of best fit to get the calibration equation for all of the temperature 
sensors. We did this because the values of slope and intercept we were getting were close 
in relation to each other and the temperature was not the most important feature of this 
payload and was mainly used to monitor general health.  

 

Table 14: This table shows and example of the data taken for one of the temperature sensors we took while calibrating it. The 
targeted temperatures are in the left most column and the expected voltages based on the datasheet are in the right most 
column. As can be seen, the actual data taken was somewhat more sporadic because of the difficulty in actually taking the 

measurements. 

Temp Actual Temp ADC Voltage Expected Voltage
-50 0.25
-45 0.3625
-40 0.475
-35 0.5875
-30 0.7
-25 0.8125
-20 -21.4 851 1.04 0.925
-15 -12.4 1032 1.24 1.0375
-10 -10 1055 1.29 1.15

-5 1.2625
0 1.375
5 1.4875
8 7.9 1382 1.69 1.555

10 1.6
15 14.8 1431 1.75 1.7125
25 21.5 1542 1.88 1.9375
30 29.7 1630 1.99 2.05
35 36.9 1793 2.19 2.1625
40 38.6 1825 2.23 2.275
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Figure 61: These plots show the temperature vs ADC value from the temperature sensor calibrations. 

 The equations from the above plots were averaged to give the equation below: 
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Appendix H: Downlink Packet 

Key Example 
Start of Tel “000000” 
Payload ID “3” 
Data length 335 
Time of Transmission 3740041 
ORI "ORI" 
Set 57 
Entry 360 
"MAIN" Delim. "MAIN" 
Start Millis 1503504 
End Milli 1503677 
Temp 3 1752.0 
Temp 4 1852.0 
Temp 5 2000.0 
Mag X + 1276.0 
Mag X - 1396.0 
Mag Y + 1448.0 
Mag Y - 1229.0 
Mag Z + 1584.0 
Mag Z - 1084.0 
Acc X -24.0 
Acc Y 0.0 
Acc Z 1044.0 
Latitude 3429.39685 
Latitude Direction N 
Longitude  10413.39411 
Longitude Direction W 
Altitude 1275.2 
GPS Timestamp 050921_193033.00 
FixQuality 2 
SatelliteCount 12 
Number Commands Received 0 
Number Commands Successful 0 
Number Commands Failed 0 
Number Commands Garbled 0 
Last Successful Command BRS 
Last Failed Command  
Last Command Received BRS 
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Time Received 3543771 
Time Flight Started 1626132454 
Time power up 1626132454 
Image Count 57 
Millis Before Image 3735826 
Millis After Image 3736057 
"BOOM" delim. "BOOM" 
DAT "DAT" 
LastSynUID 85 
SD Status 1 
Start Millis 191002 
End Millis 191004 
Temp 1 1495 
Temp 2 1593 
MagX + 1486 
MagX - 1198 
MagY + 1874 
MagY - 802 
MagZ + 1101 
MagZ - 1562 
Acc X -52 
Acc Y -28 
Acc Z 1008 
TimeSincPower 191502 

Table 15: Table showing what was downlinked in each data packet and example data. 
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Appendix I: Uplink Command Packet 

 

Table 16: Uplink Commands - Communication: Used to safely shutdown the main payload’s microcontroller prior to a power 
cycle or when descending. The null command is defined to differentiate between repeated commands and determine those 

commands were received correctly 

 

Table 17: Uplink Commands – Instrumentation: Used to turn on/off power to specific components and initiate resets of reset-
able components. 

 

Table 18: Uplink Commands Wrapper – This is the standard uplink command wrapper. It contains the appropriate header, 
footer, and 2 command bytes as mandated by HASP. 
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Appendix J: Data Record Packet and Examples  

1. Main payload  

Key Example 
ORI "ORI" 
Set 57 
Entry 360 
"MAIN" Delim. "MAIN" 
Start Millis 1503504 
End Milli 1503677 
Temp 3 1752.0 
Temp 4 1852.0 
Temp 5 2000.0 
Mag X + 1276.0 
Mag X - 1396.0 
Mag Y + 1448.0 
Mag Y - 1229.0 
Mag Z + 1584.0 
Mag Z - 1084.0 
Acc X -24.0 
Acc Y 0.0 
Acc Z 1044.0 
Latitude 3429.39685 
Latitude Direction N 
Longitude  10413.39411 
Longitude Direction W 
Altitude 1275.2 
GPS Timestamp 050921_193033.00 
FixQuality 2 
SatelliteCount 12 

Table 19: Shows what was contained in each data entry string stored on the main payload. 
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The following is an example of the saved main payload data packet. In each file contained 
on the main payload, there was a heading of payload health data, then rows of data labelled 
“ORI” for orientation data.  

 

Figure 62: Main payload file data example 

2. Boom Payload  

Key Example 
ORI "ORI" 
LastSynUID 85 
SD Status 1 
Start Millis 191002 
End Millis 191004 
Temp 1 1495 
Temp 2 1593 
MagX + 1486 
MagX - 1198 
MagY + 1874 
MagY - 802 
MagZ + 1101 
MagZ - 1562 
Acc X -52 
Acc Y -28 
Acc Z 1008 
TimeSincPower 191502 

Table 20: Shows what was saved in each data string on the boom payload SD card. 

 The following is an example of the boom payload data that was saved on the Arduino SD 
card. Each file contained on the boom payload began with the SYNC and ACK numbers that 
were transmitted between the boom and main payload and the timestamps of each. After, 
each data string is denoted by “ORI.”  
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Figure 63: Boom Payload data file example. 
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Appendix K: COMPASS Flight Data Documentation 

Processed data: 

 The COMPASS flight data arrays are saved as .npy arrays that have already been processed and 
saved.The arrays that are just float type data and not datetime objects or rotation objects have also 
been converted to .txt files and saved. 

 To import a .npy array (in this example an array called “variable.npy”), you need numpy already 
imported (usually as np), then type the following: 

name_of_variable = np.array([]) 

name_of_variable = np.load('variable.npy') 

The following arrays include all of the pieces of the COMPASS processed data that have been used in the 
data analysis code.   

1. Main payload processed data: the full main payload data set has 45805 datapoints.   

Array name Description Length of array 
actual_alt.npy  the altitudes corresponding to the 

main payload data points, taken at 
1 sec intervals. These were taken 
from the HASP GPS. 

45805 

actual_lat.npy  the latitudes corresponding to the 
main payload data points, taken at 
1 sec intervals. These were taken 
from the HASP GPS. 

45805 

actual_lon.npy  the longitudes corresponding to 
the main payload data points, 
taken at 1 sec intervals. These were 
taken from the HASP GPS. 

45805 

sub_calAccelX.npy  X component of accelerometer in 
Gs. The “sub” in the first part of the 
following names means the data 
set corresponds to the 1 second 
intervals and is a subset of the full 
MP dataset (the MP actually took 
data more quickly than 1/sec)  

45805 

sub_calAccelY.npy  Y component of accelerometer in 
Gs 

45805 

sub_calAccelZ.npy  Z component of accelerometer in 
Gs 

45805 

sub_calTemp3.npy calibrated temperature data from 
temp sensor on main payload 
magnetometer 

45805 

sub_calTemp4.npy calibrated temperature data from 
temp sensor on main payload 12V 
converter 

45805 
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sub_calTemp5.npy calibrated temperature data from 
temp sensor on main payload 5V 
converter 

45805 

sub_magxplus.npy   x plus component of 
magnetometer, uncalibrated ADC 
values 

45805 

sub_magxminus.npy   x minus component of 
magnetometer, uncalibrated ADC 
values 

45805 

sub_magyplus.npy   y plus component of 
magnetometer, uncalibrated ADC 
values 

45805 

sub_magyminus.npy   y minus component of 
magnetometer, uncalibrated ADC 
values 

45805 

sub_magzplus.npy   z plus component of 
magnetometer, uncalibrated ADC 
values 

45805 

sub_magzminus.npy   z minus component of 
magnetometer, uncalibrated ADC 
values 

45805 

sub_calX.npy  calibrated x component of main 
payload magnetometer, in uT 

45805 

sub_calY.npy  calibrated y component of main 
payload magnetometer, in uT 

45805 

sub_calZ.npy  calibrated z component of main 
payload magnetometer, in uT 

45805 

new_MP_unix.npy  unix time stamps corresponding to 
every MP datapoint at 1 sec 
intervals. These are taken from the 
GPS and are the true time 

45805 

MP_az_el.npy  azimuth and elevation of the 
payload pointing vector, calculated 
using the main payload data 

45805 

MP_date_objects.npy  datetime objects corresponding to 
each MP datapoint 

45805 

MP_to_BP_mask.npy Boolean mask that if applied to any 
array with full 45805 datapoint 
length will give just the points 
corresponding to BP 
datapoints/images 

45805 

p_to_e_A_MP.npy “payload to earth” rotation objects 
obtained by aligning the expected 
magnetic field readings given by 
IGRF/expected gravitational 
acceleration to the measured 
mag/accel values. These were 
calculated using MP values but 
correspond only to the subset that 
has a matching boom datapoint. 
Uses the function referenced 
below* 

250 
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p_to_e_rsq_MP.npy Root mean square distance 
(weighted) between the given set 
of vectors after alignment for MP 
data, but only subset with 
corresponding boom datapoints 

250 

p_to_E_MP_full.npy Rotation objects calculated with 
MP data, but full set 

45805 

p_to_E_rsq_MP_full.npy Root mean square distance 
between aligned vectors for MP, 
full set 

45805 

north_IGRF_MP.npy The north component of the 
magnetic field based on the 
position of the payload calculated 
from the IGRF data in uT 

45805 

east_IGRF_MP.npy The east component of the 
magnetic field based on the 
position of the payload calculated 
from the IGRF data in uT 

45805 

down_IGRF_MP.npy The down component of the 
magnetic field based on the 
position of the payload calculated 
from the IGRF data in uT 

45805 

Total_IGRF_MP.npy Total magnetic field based on 
position of the payload calculated 
from IGRF data in uT 

45805 

 

* 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.align_vectors.ht
ml#scipy.spatial.transform.Rotation.align_vectors  

2. Boom payload processed data: boom payload dataset only has 250 datapoints bc SD card didn’t 
work during flight but we still had the downlinked data.  

Array name Description Length of array 
BP_data_object.npy Datetime objects corresponding to 

each boom datapoint 
250 

BP_unix.npy Unix timestamps corresponding to 
each boom datapoint 

250 

BP_sub_alt.npy Altitude corresponding to boom 
payload datapoints 

250 

BP_sub_lat.npy latitude corresponding to boom 
payload datapoints 

250 

BP_sub_lon.npy longitude corresponding to boom 
payload datapoints. These are 
taken from the same data points as 
the main payload GPS data, but 
this array only has the set of GPS 
data corresponding to boom data 

250 

accel_x.npy X component of BP accelerometer 250 
accel_y.npy Y component of BP accelerometer 250 
accel_z.npy Z component of BP accelerometer 250 
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calTemp1.npy Calibrated temperatures from the 
BP magnetometer temp monitor 

250 

calTemp2.npy Calibrated temperatures from the 
BP arduino temp monitor 

250 

calX_mag.npy Calibrated x component BP 
magnetometer values in uT  

250 

calY_mag.npy Calibrated y component BP 
magnetometer values in uT  

250 

calZ_mag.npy Calibrated z component BP 
magnetometer values in uT  

250 

mag_x_minus.npy Uncalibrated ADC value for x minus 
component of BP magnetometer 

250 

mag_x_plus.npy Uncalibrated ADC value for x plus 
component of BP magnetometer 

250 

mag_y_minus.npy Uncalibrated ADC value for y minus 
component of BP magnetometer 

250 

mag_y_plus.npy Uncalibrated ADC value for y plus 
component of BP magnetometer 

250 

mag_z_minus.npy Uncalibrated ADC value for z minus 
component of BP magnetometer 

250 

mag_z_plus.npy Uncalibrated ADC value for z plus 
component of BP magnetometer 

250 

sun_az_el.npy Azimuth and elevation of the Sun 
at each datapoint for which there’s 
an image/boom payload datapoint 

250 

bool_array_cam0.npy Boolean array mask that when 
applied to an array length 250 will 
give only the resulting points that 
correspond to the sun being 
detected in cam0 

250 

bool_array_cam1.npy Boolean array mask that when 
applied to an array length 250 will 
give only the resulting points that 
correspond to the sun being 
detected in cam1 

250 

undistorted_left_points.npy Pixel coordinates from cam1 after 
they have been undistorted using 
the camera matrix and distortion 
coeffs 

50 
 

undistorted_right_points.npy Pixel coordinates from cam0 after 
they have been undistorted using 
the camera matrix and distortion 
coeffs  

90 
 

distorted_left.npy Pixel coordinates from cam1 
before being undistorted using 
camera matrix 

50 

distorted_left.npy Pixel coordinates from cam0 
before being undistorted using 
camera matrix 

90 

payload_to_earth_A.npy Rotation objects obtained by 
aligning the expected magnetic 
field readings given by 

250 
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IGRF/expected gravitational 
acceleration to the measured 
mag/accel values. These were 
calculated using BP values  

p_to_e_rsq.npy Root mean square distance 
(weighted) between the given set 
of vectors after alignment for BP 
data2 

250 

north_IGRF_BP.npy The north component of the 
magnetic field based on the 
position of the payload calculated 
from the IGRF data in uT 

250 

east_IGRF_BP.npy The east component of the 
magnetic field based on the 
position of the payload calculated 
from the IGRF data in uT 

250 

down_IGRF_BP.npy The down component of the 
magnetic field based on the 
position of the payload calculated 
from the IGRF data in uT 

250 

Total_IGRF_BP.npy Total magnetic field based on 
position of the payload calculated 
from IGRF data in uT 

250 

 

Other files:  

- Camera matrices.txt : gives the camera matrices and distortion coefficients for both cameras. 
The camera matrix is a 3x3 matrix and the distortion coefficients are a 1x5 matrix. These were 
given by running the camera calibration code on the RPi multiple times and averaging the 
output matrices.  

- The matrices are pasted below:  
- cam0Mtx = ([[488.7601901, 0., 633.776699], [0., 488.8880742, 386.0706219], [0., 0., 1.]]) 
- cam0DistCoeffs = ([[0.235529324, -0.290618838, 8.398753206E-4, 6.707909302E-4, 

0.0924374093]]) 
- cam1Mtx = ([[487.2260587, 0., 672.2442943], [0., 487.85669902, 376.668898], [0., 0., 1.]]) 
- cam1DistCoeffs = ([[0.2673417117, -0.3241992797, -5.82929372E-4, 0.0010265586, 

0.1030181927]]) 

 

Software:  

This is a list of the jupyter notebooks (.ipynb files) contained in the vault and an explanation of what 
they pretty much do.  

General Notation/array/vector names:  

- “A” Matrix: Payload to earth rotations, already calculated for both boom and main payload. 
Inverse goes from earth to payload.   

- P_c: sun position from camera in CAMERA FRAME 
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- P_p: sun position from camera in PAYLOAD FRAME  
- P_e: sun position from camera in EARTH FRAME 
- T_e: known sun position from date and time in EARTH FRAME 
- T_p: known sun position from date and time in PAYLOAD FRAME 
- “C” matrix: rotation from payload to camera frame.  

 

Notebooks and descriptions:  

 MP data analysis.ipynb: This notebook loads in a bunch of the already processed (“processed” 
meaning correct length/set of data) data and uses it to get the IGRF readings corresponding to 
the main payload data. It then calculates the rotation vectors between the calculated and 
measured mag/accel readings. These rotations are then applied to the pointing vector of the 
payload in the earth frame. This is then converted to azimuth and elevation to get the az/el of 
the payload using MP data.  

o Dependencies: GS_functions.py* 
 BP data analysis.ipynb: This notebook does the same basic thing as MP data analysis.ipynb but 

with boom payload data.  
o Dependencies: GS_functions.py* 

 camera analysis MP.ipynb: uses the processed MP data and the rotations between payload and 
earth (from previous MP notebook) to attempt to find rotations between camera frame and 
payload frame (C matrix). This was attempted using the physical measurements of the camera 
frame. This is also where we used the gs functions called “gs.cam0_pix_to_xyz” and 
“gs.cam1_pix_to_xyz” to get the undistorted pixels into the camera frame/3 dimensions. We’re 
not 100% sure if this function is correct and more research may have to be done on it. We then 
tried to use the C rotations and the A rotations to rotate the sun position from pixel coordinates 
between frames and compare them. This didn’t really get v far and we didn’t have time to really 
troubleshoot this.  

o Dependencies: GS_functions.py* 
 Camera analysis BP.ipynb: basically the same intended function as above but for the boom 

payload data except that we tried to find the C matrices in a different way (noted in the 
comments). It’s also incomplete because it wasn’t a priority because we couldn’t get it to work 
for the main payload.  

o Dependencies: GS_functions.py* 
 Plotting.ipynb: basically just plots all the stuff I had, this is what I used to make the poster plots.  
 GS_functions.py: this is a .py file used only for imports in the above notebooks. Written by 

Harrison Gietz and has a lot of useful functions for analyzing the data. This file also needs the file 
“igrf_utils.py” which is why that file is included also.   

 MP full set array processing.ipynb: this is a jupyter notebook that was used to take HASP GPS 
data and interpolate it to give values every 1 second (which resulted in the 45805 data points). 
This notebook also selects the main payload datapoints that correspond to these every second 
GPS measurements. The arrays that result from this are already saved as .npy files in the 
processed data arrays and this notebook shouldn’t need to be touched.  
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 Filter_imgs_w_dcoeff-C.ipynb: this notebook was used to find the center pixel of the sun for 
the images where the Sun was detected. This *mostly* worked, but I did have to go back and 
pick out images where it was subtracting the background but it was detecting another bright 
point and not the sun, so I also had to manually take these pixel points out of the arrays. The 
resulting arrays of undistorted pixel coordinates are already included in the processed data.  

 chessCalCode.py: This code was used on the Pi to determine the camera matrices and distortion 
coefficients. This link contains the references about this code: 
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html  

 


