

Payload Flight Number:	2016-	Institution:		
10	2010-	University of Colorado Boulder		
		University of Colorado Boulder		
Payload Title: High Elev	ation Light Intensity Obs	servation System V		
Student Leader:		Faculty Advisor:		
Haleigh	Flaherty	•	is Koe	hler
Aerospace B	•	Colorado Spac		
	entral Hall, 2480	-	20 UC	
Kittredge Loop		Boulder, C		
Colorado		Koehler		
	y@colorado.edu	Office: (3		
Cell: (719)) 660-8177			
Payload class:	LARGE	Payload ID Number:		10
Mass:	16.034 kg	Current:		1.83 Amps
Serial Downlink:	YES	Analog Downlink:	wnlink: NO	
Serial Commands:	YES	Discrete Commands:		NO
Payload Specification &	Integration Plan	Due: 6/24/16	De	livered:
Payload Integration Cert	tification	Scheduled: 8/5/16	Act	tual:
Flight Operation Plan		Due: 7/29/16	De	livered:
Final Flight / Science Rep	port	Due: 12/09/16	De	livered:
Abstract:				
Currently, solar observation	on is done either from the	ground, where it is subject	ted to	extensive
atmospheric interference, o	or from satellites, which	are extremely expensive. C	Observ	ving the
	11 1 . C			ence at a
sun from a high altitude ba		-	erfere	
fraction of the cost of actu	ally placing a payload in	to orbit.		
fraction of the cost of actu HELIOS V is a continuation	ally placing a payload into of the University of C	to orbit. olorado's HELIOS missior	ns. It v	will use
fraction of the cost of actu HELIOS V is a continuation the solar tracking system of	ally placing a payload in on of the University of C leveloped during the HE	to orbit. olorado's HELIOS missior LIOS IV mission to capture	ns. It v e valu	will use able
fraction of the cost of actu HELIOS V is a continuation the solar tracking system of science and engineering data	ally placing a payload in on of the University of C leveloped during the HEl ata. Its science objectives	to orbit. olorado's HELIOS mission LIOS IV mission to capture s include capturing high qua	ns. It v e valu ality i	will use able mages
fraction of the cost of actu HELIOS V is a continuation the solar tracking system of science and engineering dat of the sun in the hydrogen	ally placing a payload in on of the University of C leveloped during the HEI ata. Its science objectives -alpha wavelength to obs	to orbit. olorado's HELIOS mission LIOS IV mission to capture include capturing high qua- serve sunspots and possibly	ns. It v e valu ality i v solar	will use able mages flares.
fraction of the cost of actu HELIOS V is a continuation the solar tracking system of science and engineering dat of the sun in the hydrogen. The HELIOS V team will	ally placing a payload in on of the University of C leveloped during the HEl ata. Its science objectives -alpha wavelength to obs have a faculty mentor, bu	to orbit. olorado's HELIOS mission LIOS IV mission to capture include capturing high qua- serve sunspots and possibly ut all other members of the	ns. It v e valu ality i v solar team	will use able mages flares. shall be
fraction of the cost of actu HELIOS V is a continuation the solar tracking system of science and engineering dat of the sun in the hydrogen. The HELIOS V team will undergraduate engineering	ally placing a payload in on of the University of C leveloped during the HEl ata. Its science objectives -alpha wavelength to obs have a faculty mentor, bu	to orbit. olorado's HELIOS mission LIOS IV mission to capture include capturing high qua- serve sunspots and possibly	ns. It v e valu ality i v solar team	will use able mages flares. shall be
fraction of the cost of actu HELIOS V is a continuation the solar tracking system of science and engineering dat of the sun in the hydrogen. The HELIOS V team will undergraduate engineering team leads.	ally placing a payload in on of the University of C leveloped during the HEl ata. Its science objectives -alpha wavelength to obs have a faculty mentor, bu s students, including the p	to orbit. olorado's HELIOS mission LIOS IV mission to capture include capturing high qua- serve sunspots and possibly ut all other members of the	ns. It v e valu ality i v solar team ngine	will use able mages flares. shall be ers, and

30 V from the HASP platform, and will utilize serial uplink and downlink.

Payload Title:	High Elevation Light Intensity Observation System V			
Payload Class:	Small	Large	(circle one)	
Payload ID:	10			
Institution:	University of Col	orado at Bould	er	
Contact Name:	Haleigh Flaherty			
Contact Phone:	719-660-8177			
Contact E-mail:	haleigh.flaherty@colorado.edu			
Submit Date:	June 24 th , 2016			

I. Mechanical Specifications:

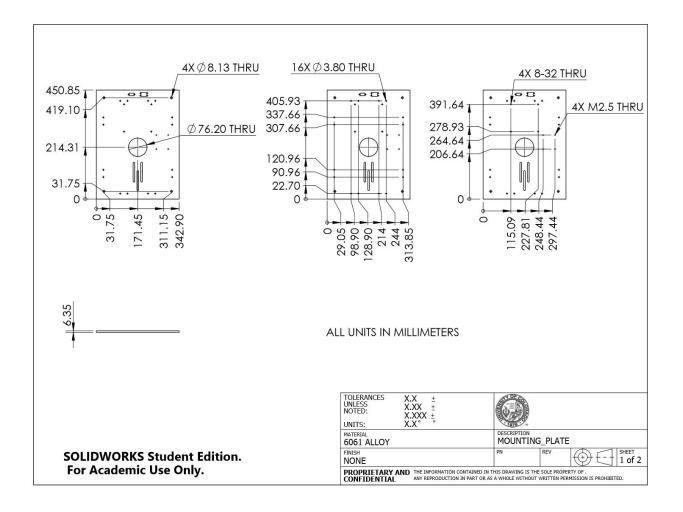
A. Measured weight of the payload (not including payload plate)

Component	Weight (kg)	Quantit	Combined Weight (kg)
Motor	1.050	2	2.100
Drivers	0.003	2	0.006
Diodes	0.003	4	0.012
Wires (Overestimated)	0.600	1	0.600
Power Board with Gertduino	0.468	1	0.468
ADCS Camera	0.138	1	0.138
Orion Telescope	1.431	1	1.431
Longpass Filter	0.040	1	0.040
Barrel & Filters	0.054	1	0.054
Hydrogen Alpha Filter	0.009	1	0.009
Science Camera	0.058	1	0.058
Focal Reducer	0.019	2	0.037
Rasperry Pi 2	0.043	2	0.086
Base plate	5.055	1	5.055
Base pillars	0.032	8	0.256
Intermediate Plate	1.802	1	1.802
Rotary Plate	0.567	1	0.567
Support Arm attached to Motor	0.245	1	0.245
Support Arm without Motor	0.273	1	0.273
Brackets	0.018	2	0.036
Upper Housing Base plate	1.252	1	1.252
Upper Housing Side Plate	0.347	2	0.694
Telescope Lower Mount	0.453	1	0.453
Telescope Upper Mount	0.236	1	0.236
Elevation Motor Mounts	0.082	2	0.164
Azimuth Motor Mount Base	0.064	1	0.064
Azimuth Motor Mount top	0.063	1	0.063
Azimuth Gear	0.522	1	0.522

Azimuth Pinion	0.039	1	0.039	
Elevation Miter Gears	0.039	2	0.078	
Azimuth Axle	0.312	1	0.312	
Elevation Axle	0.018	1	0.018	
Shaft Extension	0.043	2	0.086	
Flanged Hub	0.134	1	0.134	
Ball Bearing	0.019	4	0.076	
Side Photo Diode Housing (with c	0.218	1	0.218	
Bottom Photo Diode Housing	0.218	1	0.218	
CounterWeight Slot	0.068	1	0.068	
Side Counter Weight	0.122	1	0.122	
Back Counter Weight	1.930	1	1.930	
Large Nut	0.085	2	0.170	
Multilayer Insulation	0.300	1	0.300	
Thermal Gap Feller	0.050	2	0.100	
Copper Braid	0.150	2	0.300	
Total			20.890	± .500 kg
HASP Weight Limit			21.5	kg

Baseplate: 5.055 kg

Payload: 16.034 kg


B. Provide a mechanical drawing detailing the major components of your payload and specifically how your payload is attached to the payload mounting plate

ITEM NO.	PAIRT NUMBER	DESCRIPTION	QTY
1	10001	BASEPLATE	1
2	1000.5		8
3	30001	CIRCULAR PLATE	1
4	90002	UPPER HOUSING	1
		166 166 100 100 100 100 100 100 100 100	

Figure 1: Full structure

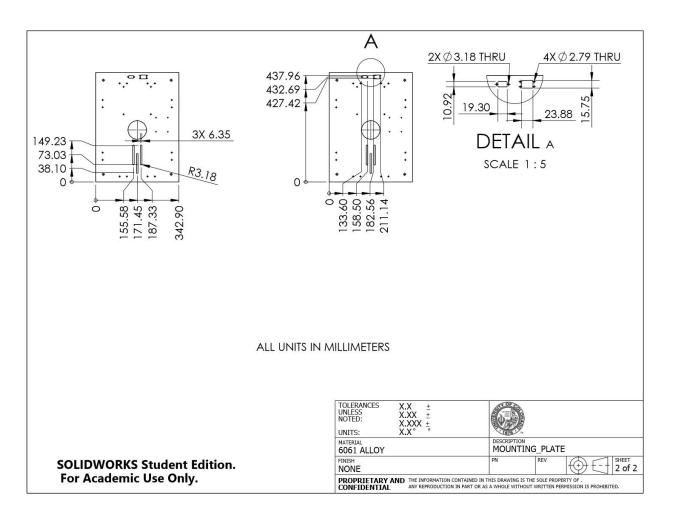


Figure 2: Base Plate

Note: This is the same custom baseplate that HELIOS IV flew in 2015

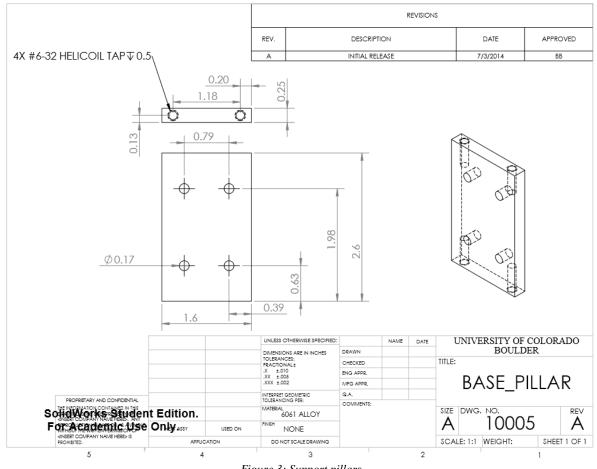
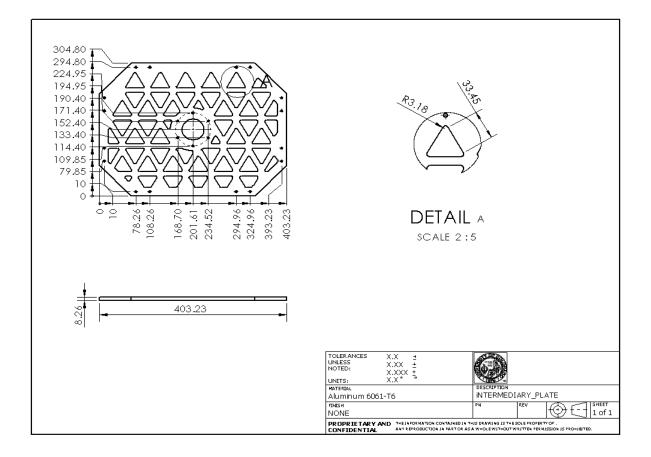



Figure 3: Support pillars

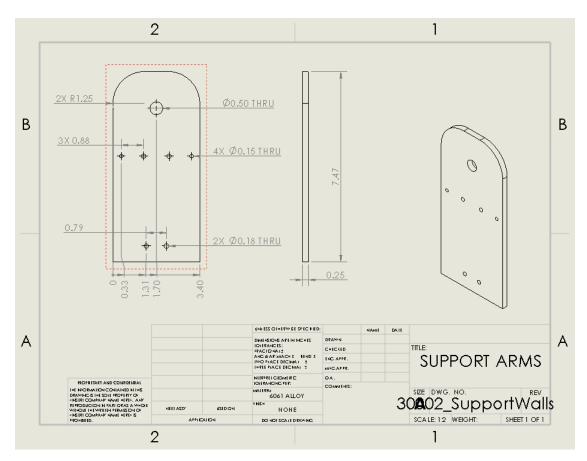
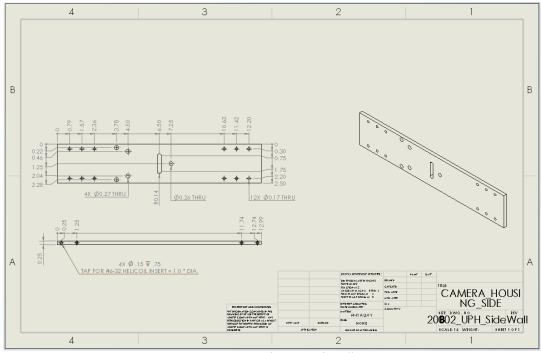
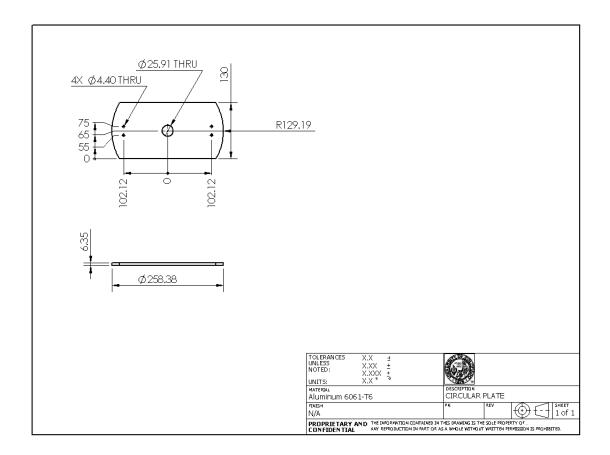
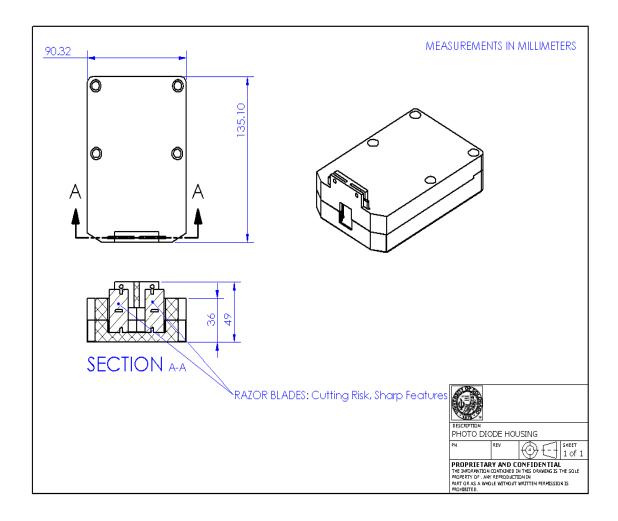


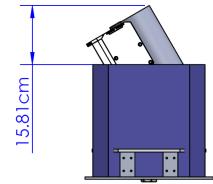

Figure 5: Support arms

Figure 6: Upper housing plate

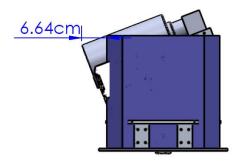

Figure 7: Upper housing side walls

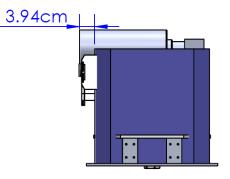
C. If you are flying anything that is potentially hazardous to HASP or the ground crew before or after launch, please supply all documentation provided with the hazardous components (i.e. pressurized containers, radioactive material, projectiles, rockets...)Photodiode Housing with indicated of where the razors are. Razors will be labeled "Cutting Risk, Sharp Features".

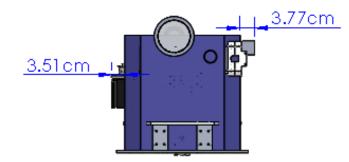


D. Other relevant mechanical information

Encroachment of size envelope with dimensions

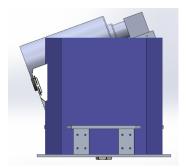

a. Vertical encroachment: (occurs at maximum angle)


Doc Version 091107

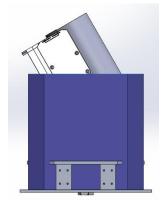

b. Horizontal encroachment: (occurs at minimum angle)

c. Flat Angle Encroachment:

d. Front Facing Encroachment:



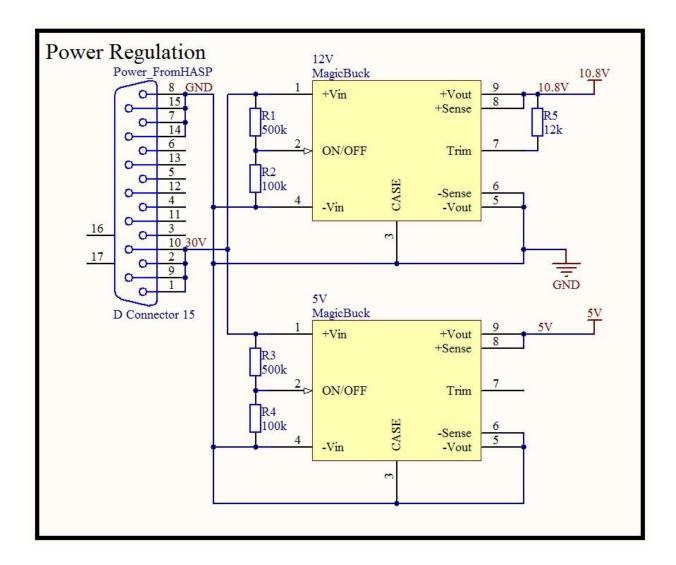
Range of motion


a. Lowest elevation: -20°

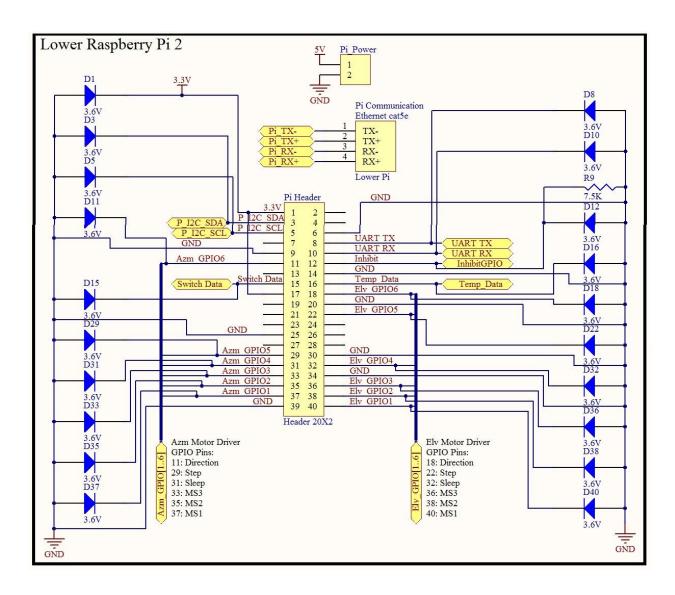
Doc Version 091107

b. Highest elevation: 60°

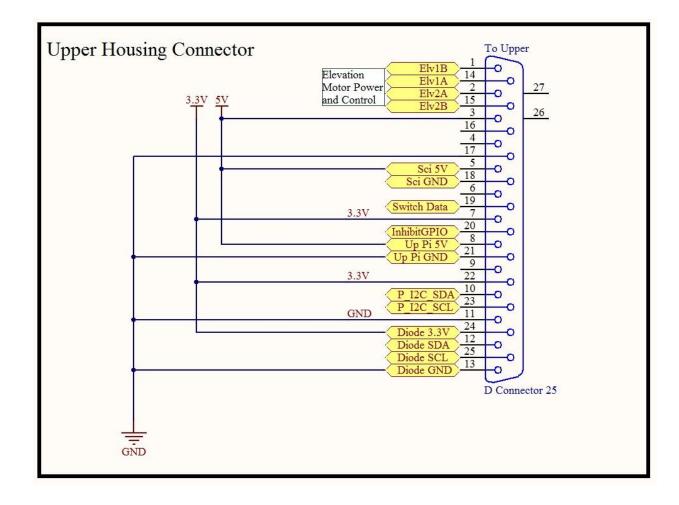
c. Azimuth: 360° of motion

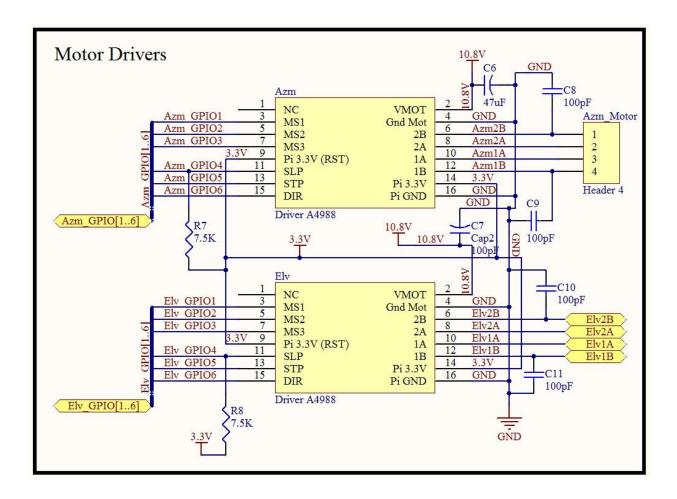

II. Power Specifications:

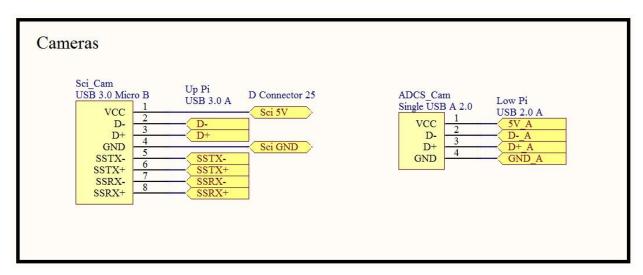
A. Measured current draw at 30 VDC

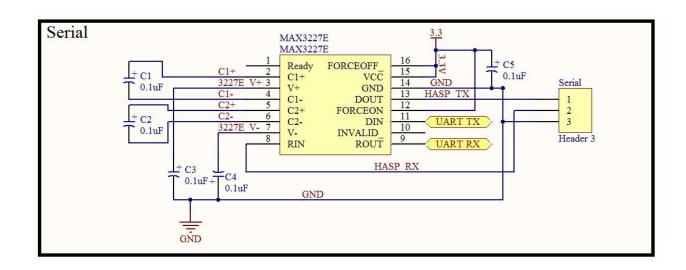

0.75 A

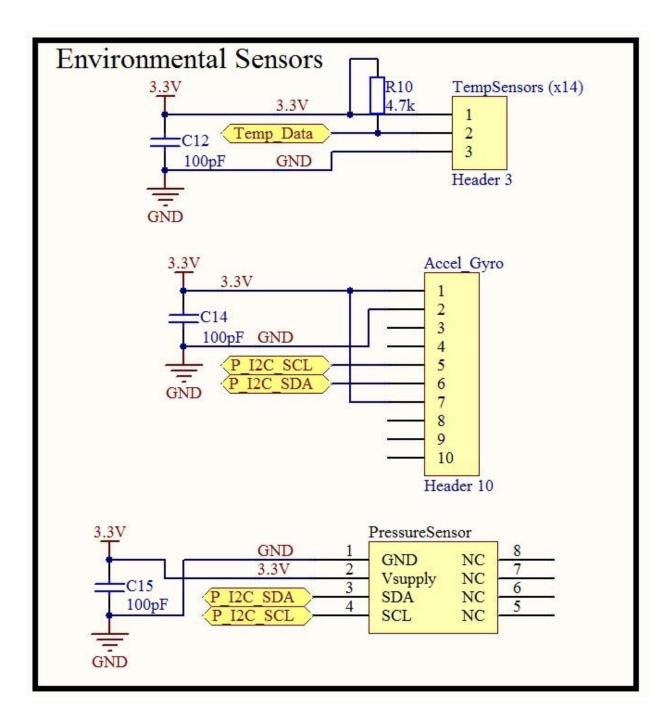
B. If HASP is providing power to your payload, provide a power system wiring diagram starting from pins on the student payload interface plate EDAC 516 connector through your power conversion to the voltages required by your subsystems.

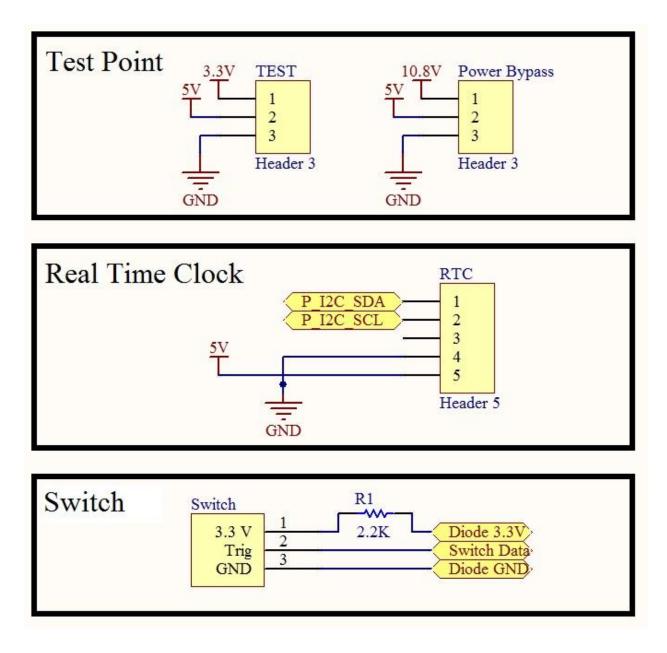


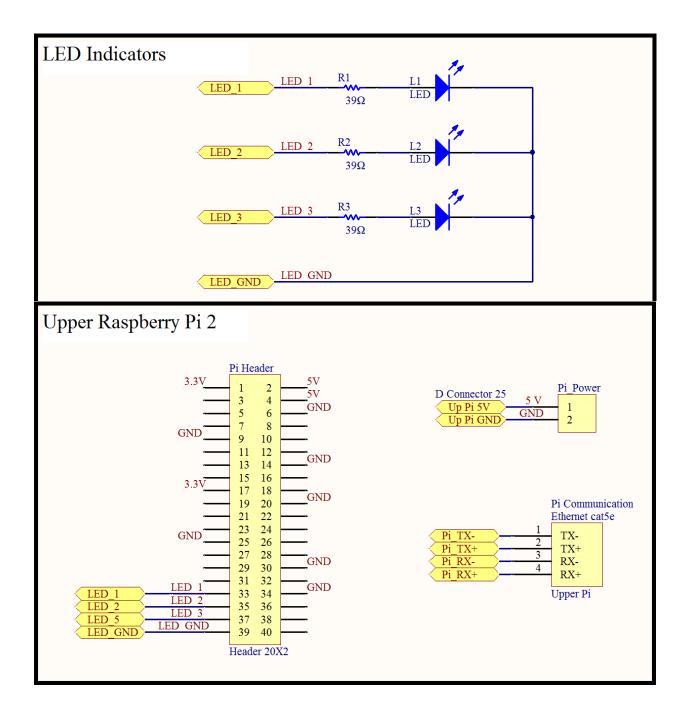












C. Other relevant power information

Component	Voltage (V)	Current (A)	Power (W)
Raspberry Pi 2	5.0	1.1	5.5
Raspberry Pi 2	5.0	1.1	5.5
Elevation Motor Driver	10.8	1.2	12.96
Azimuth Motor Driver	10.8	1.2	12.96
ADCS Camera	5.0	.75	3.75
CMOS Monochrome Camera	5.0	2.5	12.5
Micro Switch	3.3	.33	1.65
Temperature Sensors	3.3	.014	.05
Photodiode Sensors	3.3	<.0001	<.01
Total Power	30	1.83	54.87

III. Downlink Telemetry Specifications:

- A. Serial data downlink format: Stream Packetized (circle one)
- B. Approximate serial downlink rate (in bits per second)
 1600 bps
- C. Specify your serial data record including record length and information contained in each record byte.

Bytes	Content	Example
0	Start Header	0x01
1-6	Payload Identifier	CU HE
7-9	Thread Identifier*	EX
10-12	Record Type*	EX
13-23	Timestamp (from epoch)	1400019944
23-26	Length of data string	37
26-30	Adler32 Checksum	-71889546

Doc Version 091107

31	Start Transmission	0x02
32-(N-1)	Data*	The red fox jumped over the brown log.
N**	End Transmission	0x03

*Possible combinations in table below

**The maximum value of N is 127

Sender	ID	Record	ID	Content	Typical Data
Uplink	UP	Bootup	BU		uplk
		Error	ER	Invalid target and cmd	<2 bytes>
Downlin k	DW	Bootup	BU		dwnl
Sensors	SE	Bootup	BU		sens
		Temperature	T14	Data from temperature sensors	Data package
		Pressure	PR	Pressure	Data package
		Humidity	HU	% R.H.	Data package
		Accel/Gyro	AG	Acceleration and rotation on X, Y, and Z axis	Data package
ADCS	AD	Bootup	BU		adcs
		Motor Counts	MC	Azimuth and Elevation step count	Data package
		Diode Readings	DI	Azimuth and Elevation diode readings	Data package
		Ack	AC	Command executed	<1 byte>

	Error ER	Command with error	<1 byte>	
--	----------	--------------------	----------	--

D. Number of analog channels being used:

N/A

E. If analog channels are being used, what are they being used for?

N/A

F. Number of discrete lines being used:

N/A

G. If discrete lines are being used what are they being used for?

N/A

H. Are there any on-board transmitters? If so, list the frequencies being used and the transmitted power.

N/A

I. Other relevant downlink telemetry information.

None

IV. Uplink Commanding Specifications:

- A. Command uplink capability required: Yes No (circle one)
- B. If so, will commands be uplinked in regular intervals: Yes No (circle one)
- C. How many commands do you expect to uplink during the flight (can be an absolute number or a rate, i.e. *n commands per hour*)

5 to 20+ total (Dependent on need to examine/resolve errors during flight)

Payload command	Hex command	Description
Ping lower Pi	0xAA 0xAA	Pings payload to test communication
Ping upper Pi	0xFF 0x02	Confirms boot-up/communication with upper Pi
Toggle diode pair-phi	0xBB 0xA1	Toggle between main and backup diodes
Toggle diode pair-theta	0xBB 0xA0	
Azimuth nudges	0xC0 0x00-0xB4	Counter-Clockwise Nudge
	0xC1 0x00-0xB4	Clockwise Nudge
Elevation Nudges	0xD0 0x00-0x41	Nudge Up
	0xD1 0x00-0x41	Nudge Down
Reset motor count	0xBB 0xBF	Restart count to re-establish accuracy
Pan mode ON	0xBB 0xFA	Toggles panning mode for total diode failure
Pan mode OFF	0xBB 0xFB	
Query Safe Mode	0xAA 0xA0	Check whether night mode is on right now. 00 is OFF, 01 is O
Safe mode ON	0xBB 0xD1	Inhibits motion, leaves motors on
Safe mode OFF	0xBB 0xD0	(To be used at night to keep the system idle)
Reboot upper Pi	0xFF 0x01	Reboots upper Pi
Reboot both upper and lower Pi	0xFF 0x08	Restart in case of an error
Turn on image analysis	0xBB 0xB1	Turn image analysis on
Turn off image analysis	0xBB 0xB0	Turn image analysis off
Faster image capture rate	0xFF 0x06	Take pictures every 2 seconds
Slower image capture rate	0xFF 0x07	Take pictures every 5 seconds
Picture Status	0xFF 0x09	Displays time and pictures taken since last query
CPU	0xFF 0x03	Checks upper Pi CPU usage
Temperature	0xFF 0x04	Checks upper Pi temperature
Memory Storage	0xFF 0x05	Checks fullness of memory card

D. Provide a table of all of the commands that you will be uplinking to your payload

E. Are there any on-board receivers? If so, list the frequencies being used.

N/A

F. Other relevant uplink commanding information.

None

V. Integration and Logistics

A. Date and Time of your arrival for integration:

Monday August 1st at 9am CDT

B. Approximate amount of time required for integration:

Pre-T-Vac: 1 hour shall be needed to weigh in, verify current draw, verify proper downlink, transport the payload to the T-Vac area, mount the payload to the platform, and test uplink of commands.

Post-T-Vac: 1 hour shall be needed to run a systems test to verify proper functioning after the T-Vac test. The ADCS and science camera will be checked for correct alignment and the science camera will be cleaned prior to shipping. The payload will then be packed for shipping to Fort Sumner, NM.

C. Name of the integration team leader: Doc Version 091107

Haleigh Flaherty

D. Email address of the integration team leader:

haleigh.flaherty@colorado.edu

E. List **ALL** integration participants (first and last names) who will be present for integration with their email addresses:

Haleigh Flaherty	haleigh.flaherty@colorado.edu
Virginia Nystrom	virginia.nystrom@colorado.edu
Ross Kloetzel	ross.kloetzel@colorado.edu
Logan Thompson	logan.thompson@colorado.edu
Dawson Beatty	dawson.beatty@colorado.edu

F. Define a successful integration of your payload:

A successful integration of the payload includes delivering the functioning and fully intact HELIOS payload to the integration facility, where it will mechanically integrate with the HASP platform, downlink data to the HASP platform and ground station, appropriately respond to uplinked serial commands, and maintain operations during Thermal Vacuum testing. HELIOS will meet all HASP requirements and remain functional after extensive testing.

G. List all expected integration steps:

- 1. Deliver payload for weighing and confirmation of serial communication with HASP
- 2. Deliver payload to be integrated on platform
- 3. Collect downlinked data during thermal vacuum testing
- 4. Remove REMOVE BEFORE FLIGHT pin from motors
- 5. Run through Integration Verification Procedure
 - H. List all checks that will determine a successful integration:
- 1. Ensure that all requirements specified by the HASP Payload Integration Certificate are met
- 2. Ensure that the mass of the payload does not exceed the weight limit
- 3. Ensure payload properly mechanically integrates into HASP platform

Doc Version 091107

4. Integration Verification Procedure has been completed

I. List any additional LSU personnel support needed for a successful integration other than directly related to the HASP integration (i.e. lifting, moving equipment, hotel information/arrangements, any special delivery needs...):

N/A

J. List any LSU supplied equipment that may be needed for a successful integration:A table and wall outlet to perform Integration Verification Procedure.