

Payload Title:	Single Event Effe	ct Detector	
Payload Class:	<u>Small</u>	Large	(circle one)
Payload ID:	2012-04		
Institution:	Montana State Un	iversity	
Contact Name:	Justin Hogan		
Contact Phone:	<u>(505)-997-3844</u>		
Contact E-mail:	justin.hogan@ms	u.montana.edu	
Submit Date:	04/20/2012		

I. Mechanical Specifications:

- A. Measured weight of the payload (not including payload plate)
 - i. Payload weight will be measured at integration (need scale)
- B. Provide a mechanical drawing detailing the major components of your payload and specifically how your payload is attached to the payload mounting plate
 - i. Appendix I figure 1 provides a depiction of the payload including the following components:
 - 1. Payload mounting plate
 - 2. Payload enclosure with insulation
 - 3. Payload enclosure lid
 - 4. Five-CCA electronics stack
 - a. Sensor 1 (top)
 - b. Sensor 2
 - c. FPGA CCA
 - d. Experiment CCA (will not be flown)
 - e. Power CCA (bottom)

- C. If you are flying anything that is potentially hazardous to HASP or the ground crew before or after launch, please supply all documentation provided with the hazardous components (i.e. pressurized containers, radioactive material, projectiles, rockets...)
 - i. Payload contains no hazardous materials.
- D. Other relevant mechanical information
 - i. No other information at this time.

II. Power Specifications:

- A. Measured current draw at 30 VDC
 - i. Current draw at 30 VDC will be measured at integration.
- B. If HASP is providing power to your payload, provide a power system wiring diagram starting from pins on the student payload interface plate EDAC 516 connector through your power conversion to the voltages required by your subsystems.
 - i. Power system wiring diagram included in Appendix I figure 2.
- C. Other relevant power information
 - i. No other relevant power information at this time.

III. Downlink Telemetry Specifications:

- A. Serial data downlink format: Stream <u>Packetized</u> (circle one)
- B. Approximate serial downlink rate (in bits per second)
 - i. 1200 bps
- C. Specify your serial data record including record length and information contained in each record byte.
 - i. Serial data record length varies. See Appendix I figure 3 for details.
- D. Number of analog channels being used:
 - i. No analog channels used.
- E. If analog channels are being used, what are they being used for?
 - i. N/A
- F. Number of discrete lines being used:
 - i. No discrete lines used.
- G. If discrete lines are being used what are they being used for?
 - i. N/A
- H. Are there any on-board transmitters? If so, list the frequencies being used and the transmitted power.

- i. No on-board transmitters.
- I. Other relevant downlink telemetry information.
 - i. No other downlink telemetry information at this time.

IV. Uplink Commanding Specifications:

- A. Command uplink capability required: <u>Yes</u> No (circle one)
- B. If so, will commands be uplinked in regular intervals: Yes <u>No</u> (circle one)
- C. How many commands do you expect to uplink during the flight (can be an absolute number or a rate, i.e. *n commands per hour*)
 - i. One command early in ascent to verify correct power-up and operation.
 - ii. Other commands only on as-needed basis during flight. (No commands during nominal operation)
- D. Provide a table of all of the commands that you will be uplinking to your payload
 - i. Table of all payload commands included in Appendix I figure 4.
- E. Are there any on-board receivers? If so, list the frequencies being used.
 - i. No on-board receivers.
- F. Other relevant uplink commanding information.
 - i. No other relevant uplink command information at this time.

V. Integration and Logistics

- A. Date and Time of your arrival for integration:
 - i. 0800 July 30, 2012
- B. Approximate amount of time required for integration:
 - i. 8 hours
- C. Name of the integration team leader:
 - i. Raymond Weber
- D. Email address of the integration team leader:
 - i. raymond.weber@msu.montana.edu

- E. List **ALL** integration participants (first and last names) who will be present for integration with their email addresses:
 - i. Justin Hogan, justin.hogan@msu.montana.edu
 - ii. Raymond Weber, raymond.weber@msu.montana.edu
- F. Define a successful integration of your payload:
 - i. Payload weight ≤ 3 kg
 - ii. Current @ 30 VDC \leq 0.5A
 - iii. Nominal system start-up after power on
 - iv. Payload telemetry packet arrival is verified
 - v. Payload response to each available command is verified
 - vi. Payload demonstrates proper operation under thermal and vacuum testing.
- G. List all expected integration steps:
 - i. Measure weight of fully-assembled payload
 - ii. Attach payload to mounting plate and attach connectors
 - iii. Apply power to payload and measure current
 - 1. Current should be measured throughout all integration steps to demonstrate power requirement satisfaction under all operating conditions.
 - iv. Await first telemetry downlink from DAU and process upon arrival
 - 1. Ensure correct payload start
 - v. Continue monitoring payload telemetry downlink
 - 1. Observe arrival of nominal payload data
 - vi. Iteratively issue all available commands
 - 1. Observe proper system response in telemetry downlink
 - vii. Power down payload
 - viii. Retrieve on-board memory device
 - 1. Download data to a local computer
 - 2. Observe proper storage of flight data
- H. List all checks that will determine a successful integration:
 - i. Measured weight ≤ 3 kg
 - ii. Measured current @ 30 VDC \leq 0.5A
 - iii. Check telemetry to verify proper power-on sequence

- iv. Check telemetry to verify proper telemetry packet contents and transmission frequency
- v. Check telemetry to verify proper response to each command
- vi. Verify local memory storage contents to ensure proper local archival
- vii. Demonstrate proper operation during thermal and pressure testing
- I. List any additional LSU personnel support needed for a successful integration other than directly related to the HASP integration (i.e. lifting, moving equipment, hotel information/arrangements, any special delivery needs...):
 - i. No additional personnel support anticipated at this time.
- J. List any LSU supplied equipment that may be needed for a successful integration:
 - i. Anticipate use of standard lab measurement equipment including:
 - 1. Oscilloscope
 - 2. Multimeter (Ohmmeter, Voltmeter, Ammeter)
 - 3. Payload attachment tools (Philips screwdriver, hex drivers)
 - ii. If not already available on-site, we can arrange to bring this equipment.

APPENDIX I PAYLOAD FIGURES

Figure 1

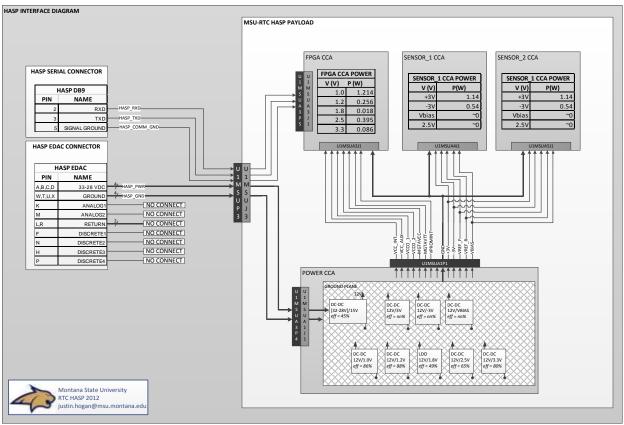


Figure 2

					MSU RT	C PAYLOAD	04 T	ELEMETRY FORMAT				
		PACKET CONTENTS										
PACKET NAME	PACKET NUMBER	B0	B1	B2:B5	B6:B9	B10:B11	B12	B13	B14	B15	B16	B17:755
TLM_NUM_STRIKES	01		0x01			0x03 0x00			CUMULATIV	E STRIKE COUNTS	PER TILE	
TLM_STRIKE_INFO	02		0x02			0x00 0x02		SEN1_X:SEN1_Y	SEN2_X:SEN2_Y			
LM_ACTIVE	03		0x03			0x00 0x02		ACTIVE_0:ACTIVE_1	ACTIVE_2:NULL			
LM_SCRUB_FAULTS	04		0x04			0x00 0x04		SCRUB_CNT	SCRUB_CNT	SCRUB_CNT	SCRUB_CNT	
ILM_VOTE_FAULTS	05		0x05			0x00 0x04	-	VOTER_CNT	VOTER_CNT	VOTER_CNT	VOTER_CNT	
ILM_TEMP	06		0x06			0x00 0x02		CTRL_JUNC_TEMP	MAIN_JUNC_TEMP			
TLM_VOLT	07		0x07				-	CTRL_VCC3V3	CTRL_VCCINT	CTRL_VCCAUX		
TLM_ECHO	08		0x08			0x00 0x01		ACKD_CMD_NUM				
TLM_CTRL_START	09		0x09					CTRL_START_CODE				
ILM_MAIN_START	10		0x0A					MAIN_START_CODE				
ILM_SHTDN	11		0x0B			0x00 0x01		SHTDN_CODE				
BYTE NUMBER	BYTE NAME		BYTE DESCRIPTION									
BO	SYNC BYTE PATTERN	Unique bit pattern unlikely to occur in data to signify beginning of telemetry packet										
B1	PACKET TYPE INDICATO	Packet typ	Packet type identifier									
B2	TIME STAMP(0:7)	Macro time stamp (seconds since 01 JAN 1970)										
B3	TIME STAMP(8:15)	Macro tim	Macro time stamp (seconds since 01 JAN 1970)									
B4	TIME STAMP(16:23)	Macro tim	Macro time stamp (seconds since 01 JAN 1970)									
B5	TIME STAMP(24:31)	Macro time stamp (seconds since 01 JAN 1970)										
B6	TIME STAMP(0:7)	Micro time stamp (nanoseconds since last second)										
B7	TIME STAMP(8:15)	Micro time stamp (nanoseconds since last second)										
B8	TIME STAMP(16:23)	Micro time stamp (nanoseconds since last second)										
B9	TIME STAMP(24:31)	Micro time stamp (nanoseconds since last second)										
B10	RECORD SIZE(15:8)	Number of data bytes contained in the data packet (1 to 65536)										
B11	RECORD SIZE(7:0)	Number of data bytes contained in the data packet (1 to 65536)										
B12	CHECKSUM	Least signi	ificant b	yte of record	checksum							
B13:B(RECORD SIZE)	PACKET DATA	Packet dat	ta conte	nts								

HASP Payload Specification and Integration Plan

Command Number	Command	Command Description	Payload Response		
01	CMD_CTRL_RST	Reset the CTRL microblaze	TLM_ECHO, TLM_CTRL_START		
02	CMD_CTRL_CFG	Reconfigure entire system (reconfig CTRL FPGA)	TLM_ECHO, TLM_STRIKES, TLM_SCRUB_FAULTS, TLM_VOTE_FAULTS, TLM_CTRL_START, TLM_MAIN_START		
03	CMD_MAIN_CFG	Reconfig main FPGA only	TLM_ECHO, TLM_MAIN_START		
04	CMD_STRIKES	Tell us total strikes since power on	TLM_ECHO, TLM_STRIKES		
05	CMD_SCRUB_FAULTS	Tell us how many faults detected by readback scrubber	TLM_ECHO, TLM_SCRUB_FAULTS		
06	CMD_VOTE_FAULTS	Tell us how many faults detected by TMR voter	TLM_ECHO, TLM_VOTE_FAULTS		
07	CMD_ACTIVE	Tell us which tiles are currently active	TLM_ECHO, TLM_ACTIVE		
08	CMD_HEALTH	Tell us core voltages and junction temperature	TLM_ECHO, TLM_VOLT, TLM_TEMP, TLM_CTRL_START, TLM_MAIN_START		
09	CMD_SHTDN	Send command to shutdown the payload	TLM_ECHO, TLM_VOLT, TLM_TEMP, TLM_STRIKES, TLM_SCRUB_FAULTS, TLM_VOTE_FAULTS		
10	CMD_TILE_MUTE	Send command to stop monitoring a faulty radiation sensor channel	TLM_ECHO		
Packet Number	Telemetry	Telemetry Packet Description			
01	TLM_NUM_STRIKES	Send the cumulative strike information			
02	TLM_STRIKE_INFO	Send the strike location information (sensor1 pos, sensor2 pos)			
03	TLM_ACTIVE	Send the active tile locations			
04	TLM_SCRUB_FAULTS	Send the number of configuration faults found by the scrubber			
05	TLM_VOTE_FAULTS	Contains the number of faults detected by the voter portion of the TMR			
06	TLM_TEMP	Contains the junction temperature for the CTRL FPGA			
07	TLM_VOLT	Contains the internal voltages of the CTRL FPGA			
08	TLM_ECHO	Contains an echo of the most recently received command			
09	TLM_CTRL_START	Contains a message indicating proper start-up of the system following power-up, reset, or reconfiguration			
10	TLM_MAIN_START	Contains a message indicating proper configuration and start-up of the Main FPGA			
11	TLM_HEART	Contains a message indicating that the system is operating nominally in the absence of strikes			
12	TLM SHTDN	Contains a message indicating the system autonomously entered a shut	tdown mode		

Figure 4