Gamma-Hadron Separation using Distribution of Light in HAWC Tanks

Pooja Surajbali 6th August 2018

International School of Cosmic Ray Astrophysics

- Erice

<u>Supervisors:</u> Prof. Jim Hinton

Apl. Prof. Stefan Wagner Dr. Harm Schoorlemmer

Contents:

- Ground-based Observation of VHE Gamma-rays	3	
- HAWC	4	
- Gammas vs Hadrons		
- New method for G/H separation in HAWC	8	
> Light Distribution for MC & data	8	
> Zenith Angle Dependence	10	
> Likelihood Ratio	11	
> Comparison to Crab	13	
> Signal-to-noise	14	
- Summary & Outlook		

Ground based detection of VHE gamma-rays:

(1) Shower Particle Detectors

- Measure particles of the shower tail which reaches the ground
- Snapshot of the shower when it reaches the ground

(2) Cherenkov Telescopes

- Observe showers that die out before reaching ground
- Uses the full atmosphere as calorimeter

(3) Fluorescent light detectors

- Records the longitudinal profile of the shower development through the atmosphere

[[]Lorenz & Wagner 2012]

<u>HAWC</u> — High Altitude Water Cherenkov Gamma-ray Observatory

- On the flanks of Sierra Negra volcano near Puebla, Mexico (18°59'41" N, 97°18'30" W)
- Designed to observe high-energy γ -rays: 100 GeV – 100 TeV
- Altitude: 4100 m a.s.l.
- 22,000 m² on ground
- Crab detected in 1 transit
- Field of view of \sim sr,
- Continuous monitoring of the sky
- $-25^{\circ} < \text{declination} < +65^{\circ}$

 $\sim \! 50 \ m$

- 300 Water Cherenkov Detectors (WCDs)
 - 188,000 L
 - 4 Photomultiplier Tubes (PMTs: 3 peripheral8" & 1 central 10" Hamamatsu)
- Cherenkov cone in water is 41°
- Denser medium so that rays interact more quickly to create high energy e^-e^+
- Outriggers smaller WCDs around main array
 - Improve sensitivity

<u>HAWC</u>

<u>Gamma vs Hadrons:</u>

- Charged cosmic rays also produce EAS
- Enormous background compared to genuine γ-ray-induced cascades

Bin No.	Percentage of PMTs hit out of 1200 (%)
0	$0.0 \le \text{Tank}_{\text{hit}} \le 8.4$
1	$8.4 \le \text{Tank}_{\text{hit}} < 16.7$
2	$16.7 \le \text{Tank}_{\text{hit}} \le 25.0$
3	$25.0 \le \text{Tank}_{\text{hit}} \le 33.4$
4	$33.4 \leq \text{Tank}_{\text{hit}} \leq 41.7$
5	$41.7 \le \text{Tank}_{\text{hit}} \le 50.0$
6	$50.0 \le \text{Tank}_{\text{hit}} \le 58.4$
7	$58.4 \le \text{Tank}_{\text{hit}} \le 66.7$
8	$66.7 \le \text{Tank}_{\text{hit}} < 75.0$
9	$75.0 \le \text{Tank}_{\text{hit}} < 83.4$
10	$83.4 \le \text{Tank}_{\text{hit}} < 91.7$
11	$91.7 \le \text{Tank}_{\text{hit}} \le 100$

Zenith Angle Dependence:

Bins have no dramatic dependence on zenith

<u>Likelihood Ratio:</u>

For one event, (log-)likelihood for a shower to be gamma induced:

For one event, (log-)likelihood for a

shower to be proton induced:

Likelihood ratio:

 $L_{\gamma} = \sum_{j} \sum_{i} \ln P_{\gamma} \left(\frac{Q_{\text{PMT}_{i}}}{Q_{\text{Tank}_{j}}}, Q_{\text{Tank}_{j}} \right)$ $L_{\rm p} = \sum_{j} \sum_{i} \ln P_{\rm p} \left(\frac{Q_{\rm PMT_i}}{Q_{\rm Tank_j}}, Q_{\rm Tank_j} \right)$ $R_{\rm p/\gamma} = L_{\rm p} - L_{\gamma}$

Calculate $L_p \& L_\gamma$ for $Q_{\text{Tank}_i} \ge \text{PE-Cut}$ (Configurable)

Likelihood Ratio (All Events):

Apply PE-Cuts: 0.1, 1 – 20, 25, 30, 35, 40, 50, 100

Find likelihood ratio using gamma showers and proton showers

Find likelihood ratio using gamma showers and data

e: Normalised Efficiency

LIKELIHOOD PLOT

PE-Cut = 8Bin = 3

Efficiency plot

<u>Comparison to Crab:</u>

Gamma-hadron separation possible (shown) for bins 8 and above

Comparison is made between gamma simulations, proton simulations, HAWC data and events from the Crab as seen by HAWC plus hard G/H cuts

$$R_{\rm p/\gamma} = L_{\rm p} - L_{\gamma}$$

Summary & Outlook

- G/H method works independent of reconstruction, array geometry and no major zenith angle dependence
- Can be optimised based on shower sizes (bins) and optimised PE-Cut applied (trigger threshold implemented)
- Better G/H separation implies better significance of results which, in turn, implies better constraints about cosmic accelerators

Thank-you!

Rooja Sura Dali