

RUHR-UNIVERSITÄT BOCHUM
The transition between Galactic and extra-galactic cosmic rays
Summerschool August 2018 - Erice, Italy
Lukas Merten, Chad Bustard, Ellen Zweibel, Julia Becker Tjus

Where are CRs in the shin region from?

- Cosmic ray can be accelerated at the GTS (Bustard+ 2016/1017)
- Can they diffuse back into the Galaxy?
- What are the time scales?
- How are their properties changed?
- What about secondaries?

Simulation

CRPropa 3.2 - a modular structure

Transport

- Propagation of Cosmic Rays using the Parker transport equation
- Taking advantage of the collective behavior of the CRs
$\frac{\partial n}{\partial t}+\vec{u} \cdot \nabla n=\nabla \cdot(\hat{\kappa} \nabla n)+\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} \kappa_{p p} \frac{\partial n}{\partial p}\right)+\frac{p}{3} \nabla \cdot \vec{u} \frac{\partial n}{\partial p}+S$
- Anisotropic diffusion in homogeneous background, including advection and adiabatic losses

Transport

- Propagation of Cosmic Rays using the Parker transport equation
- Taking advantage of the collective behavior of the CRs

$$
\frac{\partial n}{\partial t}+\vec{u} \cdot \nabla n=\nabla \cdot(\hat{\kappa} \nabla n)+\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} \kappa_{p p} \frac{\partial n}{\partial p}\right)+\frac{p}{3} \nabla \cdot \vec{u} \frac{\partial n}{\partial p}+S
$$

- Anisotropic diffusion in homogeneous background, including advection and adiabatic losses

Source

- Symmetry
- Radial / Archimedean spiral
- Diffusion
- D $\propto E^{\delta} ; D_{0}=10^{28} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$
- Advection
- $v_{0}=600 \frac{\mathrm{~km}}{\mathrm{~s}} ; r_{0}=250 \mathrm{kpc}$
- Spectrum: $\frac{\mathrm{dN}}{\mathrm{dE}} \propto E^{-2.0} ; E=10^{15}-10^{16}$

6 Lukas.merten@rub.de | arxiv: 1803.08376

The wind model - radial component

- Rise of the wind not included \rightarrow constant velocity
- Analytically smooth shock front
- Wind drops with $1 / r^{2}$

$$
v_{r}(r)=v_{0}\left[1+\frac{\left(\left(\frac{r}{r_{0}}\right)^{2}-1\right)}{1+e^{\frac{r_{0}-r}{\lambda}}}\right]
$$

The wind model - radial component

- Rise of the wind not included \rightarrow constant velocity
- Analytically smooth shock front
- Wind drops with $1 / r^{2}$

$$
v_{r}(r)=v_{0}\left[1+\frac{\left(\left(\frac{r}{r_{0}}\right)^{2}-1\right)}{1+e^{\frac{r_{0}-r}{\lambda}}}\right]
$$

RESULTS

Adiabatic energy change

$\frac{\partial n}{\partial t}+\vec{u} \cdot \nabla n=\frac{p}{3} \nabla \cdot \vec{u} \frac{\partial n}{\partial p}+S$

Cooling ($\nabla \cdot \vec{u}>0$)

- Expansion of the plasma \rightarrow energy loss

Heating ($\nabla \cdot \vec{u}<0$)

- Compression of the plasma \rightarrow energy gain

Adiabatic energy change

$$
\frac{\partial n}{\partial t}+\vec{u} \cdot \nabla n=\frac{p}{3} \nabla \cdot \vec{u} \frac{\partial n}{\partial p}+S
$$

Cooling ($\nabla \cdot \vec{u}>0$)

- Expansion of the plasma \rightarrow energy loss

Heating ($\nabla \cdot \vec{u}<0$)

- Compression of the plasma \rightarrow energy gain

Energy Spectrum

- A significant change in the spectral shape is visible
- Three regions can be identified, dominated by:

Energy Spectrum

- A significant change in the spectral shape is visible
- Three regions can be identified, dominated by:
- 1) cooling

Spherical: $\delta=0.5$ including wind

Energy Spectrum

- A significant change in the spectral shape is visible
- Three regions can be identified, dominated by:
- 1) cooling, 2) diffusion

Spherical: $\delta=0.5$ including wind

Energy Spectrum

- A significant change in the spectral shape is visible
- Three regions can be identified, dominated by:
- 1) cooling, 2) diffusion, and 3) heating

Spherical: $\delta=0.5$ including wind

Neutrino Flux

- Hadronic interaction: $p_{\mathrm{CR}}+p_{\text {target }} \rightarrow \pi^{+} \rightarrow e^{+}+v_{\mu}+\widetilde{v_{\mu}}+v_{e}$
- $n_{\text {target }} \propto \frac{1}{r^{2}} \rightarrow$ Use accumulated column density to calculate flux
- Assumption: All neutrinos are produced at $r_{\mathrm{obs}}=10 \mathrm{kpc}$

Column density

Neutrino Flux

- Hadronic interaction: $p_{\mathrm{CR}}+p_{\text {target }} \rightarrow \pi^{+} \rightarrow e^{+}+v_{\mu}+\widetilde{v_{\mu}}+v_{e}$
- $n_{\text {target }} \propto \frac{1}{r^{2}} \rightarrow$ Use accumulated column density to calculate flux
- Assumption: All neutrinos are produced at $r_{\mathrm{obs}}=10 \mathrm{kpc}$

Column density

Flux for $\delta=0.5$

Total proton flux

Spherical symmetric, no wind

18 Lukas.Merten@rub.de | arxiv: 1803.08376

Total proton flux

Spherical

Archimedean

$$
\begin{array}{llll}
- & \delta=0.5, \epsilon=0.1 & \cdots \cdots \cdot \delta=0.6, \epsilon=0.1 & -\cdots=\mathrm{H}: 10^{3}-10^{4} \mathrm{TeV} \\
=-=\delta=0.5, \epsilon=0 & \cdots \cdots \cdot & \delta=0.6, \epsilon=0 & \quad=-\mathrm{HGp}: 10-10^{5} \mathrm{TeV}
\end{array}
$$

Lukas.merten@rub.de | arxiv: 1803.08376

Arrival Direction - Archimedean spiral

- Different field line length \rightarrow double ring structure
- Maxima shift from the poles to the equator
- Perpendicular diffusion $\left(\kappa_{\perp}=0.1 \kappa_{\|}\right)$washes the structure out

Skymap in Galactic coordinates

SUMMARY / OUTLOOK

Summary

The expected spectra depend strongly on the model \rightarrow compatible with observations
(Stable) Neutrino flux is below IceCube diffuse measurements

Anisotropy in the is to high

Proton total luminosity is too low
\rightarrow CRs from the GWTS cannot be the sole source in the shin region

22 Lukas.Merten@rub.de | arxiv: 1803.08376

Outlook

Further propagation of the CRs to Earth

Restrict the wind to a fraction of the sphere

Simulate the neutrino production

Look at CRs leaving the wind termination shock
\rightarrow Starburst Galaxies

23 Lukas.Merten@rub.de | arxiv: 1803.08376

BACKUP

Energy Spectrum

- A significant change in the spectral shape is visible
- Three regions can be identified, dominated by:
- 1) cooling, 2) diffusion, and 3) heating

Archimedean spiral: $\delta=0.5, \kappa=0.1$, including wind

Transport

- Propagation of Cosmic Rays using the Parker transport equation
- Taking advantage of the collective behavior of the CRs

$$
\frac{\partial n}{\partial t}+\vec{u} \cdot \nabla n=\nabla \cdot(\hat{\kappa} \nabla n)+\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} \kappa_{p p} \frac{\partial n}{\partial p}\right)+\frac{p}{3} \nabla \cdot \vec{u} \frac{\partial n}{\partial p}+S
$$

Anisotropic diffusion in homogeneous background including advection

Green's method

$S_{\text {burst }}=S_{0} \delta\left(r_{0}\right) \delta\left(t-t_{0}\right)$
$S_{\text {finite }}=\tilde{S}_{0} \Theta\left(t-t_{0}\right) \Theta\left(\mathrm{t}_{1}-\mathrm{t}_{0}\right)$; Example: $t_{\mathrm{obs}}=100 \mathrm{Myr} ; \Delta t=t_{1}-t_{0}=50 \mathrm{Myr}$

Model Assumption

Symmetry

- Radial / Archmedean spiral

Diffusion

- $\mathrm{D} \propto E^{\delta}$
- $D_{0}=10^{28} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$

Advection

- $v_{0}=600 \frac{\mathrm{~km}}{\mathrm{~s}}$
- $r_{0}=250 k p c$

Boundaries

- $r_{\text {obs }}=10 \mathrm{kpc}$
- $r_{\text {loss }}=350 \mathrm{kpc}$

Simulation details

- $N=10^{7}-8.5 \cdot 10^{8}$
- $\tau_{\mathrm{CPU}}=O(10) h-O(1000) h$

OBSERVATION

Observation - Energy Spectrum

Fig 2. The energy spectrum of Cosmic rays.

Observation - Composition

Fig 3. Boron to carbon ratio as a measure for the column depth.

NASA. Imagine the
Unive Universe. access:
(23.02.2 (23.02.2015)

Observation - B/C ratio

Fig 3. Boron to carbon ratio as a measure for the column depth.

Observation - Arrival Directions

Fig 4. Cosmic ray arrival anisotropy at a median energy $\mathrm{E}=20 \mathrm{TeV}$ after the subtraction of the best fit dipole and quadrupole.

SDE - MATH

2 Propagation Models

Stochastic Differential Equation

Langevin Equation
$\frac{\mathrm{d} x}{\mathrm{~d} t}=a(x, t)+b(x, t) \xi(t)$

Stochastic Integral Equation
$x(t)=x(0)+\int_{t_{0}}^{t} a[x(s), s] \mathrm{d} s+\int_{t_{0}}^{t} b[x(s), s] \mathrm{d} W(s)$

- These equations can be treated mathematically consistently.
- Numerical algorithm to solve them are available.

From Fokker-Planck Equ. to SDE

General Fokker-Planck Equation

$$
\frac{\partial n\left(x, t ; y, t^{\prime}\right)}{\partial t}=-\sum_{i} \frac{\partial}{\partial x_{i}}\left[A_{i}(x, t) n\left(x, t ; y, t^{\prime}\right)\right]+\frac{1}{2} \sum_{i, j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left[B_{i j}(x, t) n\left(x, t ; y, t^{\prime}\right)\right]
$$

Corresponding Stochastic Differential Equation
$\mathrm{d} r_{\nu}=A_{\nu} \mathrm{d} t+D_{\nu \mu} \mathrm{d} \omega^{\mu}$
Calculation of stochastic tensor D
$\left(\kappa+\kappa^{t}\right)=D D^{\dagger}$
In the case of decoupled momentum und spatial operators
And diagonal diffusion tensor

$$
D_{i j}=\delta_{i j} \sqrt{2 \kappa_{i j}}, \quad D_{q q}=\sqrt{2 \kappa_{q q}}
$$

Integration scheme

$$
\begin{aligned}
\vec{x}_{n+1} & =\vec{x}_{n}+D_{r} \Delta \vec{w}_{r} \\
& =\vec{x}_{n}+\left(\sqrt{2 \kappa_{\|}} \eta_{\|} \vec{e}_{t}+\sqrt{2 \kappa_{\perp, 1}} \eta_{\perp, 1} \vec{e}_{n}+\sqrt{2 \kappa_{\perp, 2}} \eta_{\perp, 2} \vec{e}_{b}\right) \sqrt{h}
\end{aligned}
$$

- Magnetic field line implementation (e.g. JF12 field) is not trivial.
- Calculation of the local trihedron is the crucial part.
- Use adaptive field line integration \rightarrow e.g. Cash-Karp algorithm.

$$
\vec{r}_{\text {end }}=\vec{r}_{\text {start }}+\int_{0}^{L} \vec{B} / B \mathrm{~d} s \quad \vec{r}_{\text {end }}=\vec{r}_{0}+\sum_{j=0}^{2^{n}-1} \int_{2^{-n} L j}^{2^{-n} L(j+1)} \vec{v}(s) \mathrm{d} s
$$

SDE and FPE

Ito's lemma leads to equivalence between stochastic differential equation (SDE) and Fokker-Planck transport equation (FPE)

$$
\begin{aligned}
& \frac{\partial \Psi(r, t)}{\partial t}=\nabla \cdot(D \cdot \nabla \Psi(r, t))+S(r, t) \\
& d r=A d t+B d \omega \quad \text { with: } d \omega=\eta \sqrt{d t} \\
& \quad B=\sqrt{2 \cdot D}, A=0
\end{aligned}
$$

Diffusion tensor is diagonal in frame with $\vec{B}=B_{0} \cdot \overrightarrow{e_{z}}$

$$
D=\left[\begin{array}{ccc}
\kappa_{\text {perp }, 1} & 0 & 0 \\
0 & \kappa_{\text {perp }, 2} & 0 \\
0 & 0 & \kappa_{\text {par }}
\end{array}\right]
$$

with: $\kappa_{p e r p, 1}=\kappa_{p e r p, 2}$:

CRPropa

CRPropa 3.2 - a rich toolbox

- ElectronPairProduction
- PhotoPionProduction
- PhotoDisintegration
- NuclearDecay

NucleonInteracion

- ShellOutput
- TextOutput
- HDF5Output
- ParticleCollector
- EM(Double/Triple)PairProduction
- EMInverseComptonScattering

EM-

Interactions

- Redshift
- SynchrotronRadiation
- AdiabaticCooling

General Interactions

- PerformanceModule

Others

PERFORMANCE

Performance

Fig 15: Comparison of computation times. Conventional CRPropa3 (left) and propagation with the DiffusionModule (right)

PROBLEMS WITH THE JF12-FIELD

Problem: Fixed step length

Fig 19: Magnetic field line (blue) and end position after diffusion process (red dots).

Deviation vectors

Fig 20: Ninty smallest deviation vectors for $\mathrm{E}=10 \mathrm{TeV}$

Deviation from field line II

Fig 21: Deviation from ideal trajectory is uniformly distributed in Φ.

Fig 22: Deviation from ideal trajectory peaks around the plane perpendicular to magnetic field line.

VALIDATION

Validation I

First test of the diffusion in a homogeneous magnetic background field. A simple anisotropic diffusion tensor is implemented.

Fig 7. The algorithm reproduces the expected analytic results (simulation-barplot, theory-solid lines).

Stationary Test I

Stationary equation of anisotropic diffusion
$-\nabla \cdot(\hat{\kappa} \nabla n(\vec{r}))=s(\vec{r})$
Source term MoSSible?

Indirect solution

$$
\frac{\partial n}{\partial t}=\nabla \cdot(\hat{\kappa} \nabla n)+s(\vec{r}) \delta\left(t-t_{i}\right) \quad \quad n_{\operatorname{sim}}(\vec{r})=\sum_{i} n\left(t_{i}\right) h_{i} w
$$

Stationary Test II

Fig 8. Total number density depending on maximum integration time for different numbers of snapshots.

Stationary Test III

Fig 25. Total number density depending on maximum integration time for different integration time steps.

Validation Ila

Fig 9: Example of a spiral field line and a sample of end positions.

- We test the accuracy of the algorithm in an artificial situation.
- A spiral with varying radius is used as the magnetic field line.
- The distance to the field line after the diffusion is taken as a measure for the algorithm accuracy.

Validation Ilb

Fig 10: Results for the accuracy test. The algorithm allows a user chosen precision for a pure parallel diffusion.

Adiabatic Cooling

$$
\frac{\partial n}{\partial t}+\vec{u} \cdot \nabla n=\nabla \cdot(\hat{\kappa} \nabla n)+\frac{1}{3}(\nabla \cdot \vec{u}) \frac{\partial n}{\partial \ln p}+S(\vec{x}, p, t)
$$

Fig 4. Particle and energy density for advective test case.

EXAMPLES

First applications - Rigidity

Fig 14: Time Evolution of the total particle number.

Continuous source

Fig 24: Cosmic ray density for continuous uniform emission inside the Galactic disc.

4 Time Evolution $\Delta t=100 \mathrm{Myr} ; \boldsymbol{\delta}=\mathbf{0 . 5}$

Time Evolution $\Delta \mathrm{t}=\mathbf{1 0 0} \mathbf{~ M y r} ; \boldsymbol{\delta}=\mathbf{0 . 3}$

4 Time Evolution $\Delta t=100 \mathrm{Myr} ; \boldsymbol{\delta}=\mathbf{0 . 4}$

4 Time Evolution $\Delta t=100 \mathrm{Myr} ; \boldsymbol{\delta}=\mathbf{0 . 5}$

Time Evolution $\Delta \mathrm{t}=\mathbf{1 0 0} \mathrm{Myr} ; \boldsymbol{\delta}=\mathbf{0 . 6}$

4 Arrival $\delta=0.6, \epsilon=0 . ;$ Wind

4 Arrival $\delta=0.6, \epsilon=0.1$; Wind

EXTENSION

Outlook

Use the local turbulence ratio η with: $\eta=\frac{b_{0}^{2}}{b_{0}^{2}+B_{0}^{2}}$ to calculate diffusion tensor.

Fig 23: The turbulence ratio of the JF12 field.

COMPETITORS

Comparison of Tools

Tab. 1: Popular Propagation Programs

Name	Propa- gation	Diffusion	Integration	Inter- action	Remarks	Cite
GALPROP	Trans. Equ.	Scalar	Grid (Crank Nicolson)	Yes	Quasi stand.	Strong et al. (2011)
DRAGON 2	Trans.	3dim anisotr.	Grid	Yes		Evoli et al. (2016)
	Equ.					

