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Gravitational waves

Gravitational waves are quadrupolar distortions of 
distances between freely falling masses. They are 
produced by time-varying mass quadrupoles. 

€ 

Gµν =
8πG
c 4 Tµν (= 0 in vacuum)

gµν =ηµν + hµν

GWs from a NS-NS coalescence in the Virgo cluster has h ~ 10-21 near Earth, and happens 
~once every 50 years. 



GW landscape
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The big picture of gravitational wave astronomy
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Many sources, many frequencies, many 
detectors, many collaborations 



Primordial GWs:  
Cosmological Microwave Background
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5https://arxiv.org/abs/1807.02199 

PRL 112, 241101 (2014) 



Pulsar timing
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Measuring changes in phase of pulsar radio 
beams on Earth, we have a “galactic scale 
interferometer”  measuring gravitational waves 
with periods of several years (nHz 
frequencies): mergers of super-massive black 
holes (galaxies!). They are limited by noise in 
the time of arrival of radio beams, number of 
pulsars and integration time.  

10 µs 



Pulsar timing results
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THE NANOGRAV COLLABORATION) 
arXiv:1801.02617 

Babak et. al 
MNRAS 455, 1665-1679, 2016 



Space-based detector: LISA
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ESA large L3 mission,  
launch date 2034, 
Mission design call 2016 

LISA L3 study 
https://arxiv.org/abs/1702.00786 



LISA Pathfinder  
the quietest place in space 

9LISA Pathfinder performance analysis. Credit: ESA/LISA Pathfinder Collaboration 
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Image Credit: Caltech/MIT/LIGO Lab  

Ground-based network



2008+: 
Advanced LIGO detectors
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2008+: 
Advanced LIGO detectors
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Advanced LIGO = (Servo Control)N>>1
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Gravitational Wave signal 
Credit: Anamaria Effler, LIGO Livingston 



Searching for gravitational waves
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NASA, WMAP 

Stochastic background from many unresolved 
sources, or from the beginning of the Universe 

? 

Short transients from supernova 
explosions or other sources 

W49B composite;  
X-ray: NASA/CXC/MIT/L.Lopez et al.;  

Infrared: Palomar; Radio: NSF/NRAO/VLA 

Crab pulsar (NASA, Chandra 
Observatory) 

Periodic, continuous waves 
Binary systems with neutron 
stars and/or black holes 

Credit: John Rowe 



Initial (2001-2010) and  
advanced (2015+) LIGO
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Reduced		Brownian	Noise	
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15-20 Mpc BNS  
inspiral range; 
Ended 2010  

200 Mpc BNS  
inspiral range; 

Circa 2019 



Advanced LIGO Noise

25 April 2016 M. Evans, Stanford
17
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M. Evans, Stanford
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25 April 2016 M. Evans, Stanford
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Projections, plans: 2013
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https://arxiv.org/abs/1304.0670v1 



Sensitivity progress

S6 (2010) 
O1 (2015) 

aLIGO 
 

A+ 
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1100+ miembros, ~100 instituciones, 16 países 

LIGO Scientific 
Collaboration
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The next few years 
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Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced 
LIGO, Advanced Virgo and KAGRA 

https://arxiv.org/abs/1304.0670 



Shot noise: quantum noise!



Squeezing en iLIGO and GEO600



Projections, plans: 2018
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https://arxiv.org/abs/1304.0670v6 
 

BNS coalescence rate:  320 – 4740 /Gpc3/yr 
BBH coalescence rate:  12 – 200 /Gpc3/yr 



Past, present and (near) future

29
Living Rev. Relativity 19 (2016), 1 



The future:  
3rd generation detectors

30

Class. Quantum Grav. 34 (2017) 044001 

http://www.et-gw.eu/ 

Einstein Telescope 

S.Hild et al., Classical and Quantum Gravity, 28 094013, 2011  



Image Credit: Caltech/MIT/LIGO Lab  

Tomorrow: GW astronomy
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The next few years 
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Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced 
LIGO, Advanced Virgo and KAGRA 

https://arxiv.org/abs/1304.0670 



Advanced LIGO detectors  
September 2015
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PRL 116, 061102 (2016) 



Image Credit: Caltech/MIT/LIGO Lab  

On Sept 14 2015…



11 de Febrero, 2016: ¡We did it!
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PRL 116, 061102 (2016) 



Image credit: LIGO  



Gravity’s music
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Searching for gravitational waves
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NASA, WMAP 

Stochastic background from many unresolved 
sources, or from the beginning of the Universe 

? 

Short transients from supernova 
explosions or other sources 

W49B composite;  
X-ray: NASA/CXC/MIT/L.Lopez et al.;  

Infrared: Palomar; Radio: NSF/NRAO/VLA 

Crab pulsar (NASA, Chandra 
Observatory) 

Periodic, continuous waves 
Binary systems with neutron 
stars and/or black holes 

Credit: John Rowe 



A solution to Einstein’s 
equations
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Animation created by SXS, the Simulating eXtreme Spacetimes (SXS) project (http://www.black-holes.org) 



Matched filtering in action

Animation by Chad Hanna 

A signal with SNR 20 is not obvious in time series – 
but it is huge in matched filtering :  



How to get misled by matched 
filtering in non-gaussian noise

combined	eff	snr2	

Animation by Chad Hanna 



Searching and finding waveforms
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Phys. Rev. X 6, 041015 (2016) )  



Significance of the three signals O1 BBH search
Search for binary black holes systems with black holes larger 
than 2 M¤ and total mass less than 100 M¤, in O1 (Sep 12, 
2015-Jan 19, 2016, ~48 days of coincident data) 
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Phys. Rev. X 6, 041015 (2016) )  



GW150914: also found as a “burst”

47
Phys. Rev. D 93, 122004 (2016) 

“blip glitch” 
Classical and Quantum Gravity  

33, 134001 (2016) 



GW151226: not so obvious!
Filtered detector output and filtered best matching waveform 

Signal-to-noise (SNR) when best template matches at coalescence time  

Phys. Rev. Lett. 116, 241103 (2016) 
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Properties of the merging binary black hole GW1509141

The LIGO Scientific Collaboration1 and The Virgo Collaboration2
2

1
The LSC3
2
Virgo4

( compiled 29 January 2016)5

PACS numbers: 04.80.Nn, 04.25.dg, 95.85.Sz, 97.80.–d6

FIG. 1. Posterior probability distributions for the source-frame
component masses msource

1

and msource

2

. In the 1-dimensional
marginalised distributions we show the Overall (solid), IMR-
Phenom (blue) and EOBNR (red) probability distributions; the
dashed vertical lines mark the 90% credible interval for the Over-
all PDF. The 2-dimensional plot shows the contours of the 50%

and 90% credible regions plotted over a color-coded posterior
density function.
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FIG. 2. Posterior probability distributions for the source-frame
mass and spin of the remnant BH produced by the coalescence of
GW150914. In the 1-dimensional marginalised distributions we
show the Overall (solid), IMRPhenom (blue) and EOBNR (red)
probability distributions; the dashed vertical lines mark the 90%

credible interval for the Overall PDF. The 2-dimensional plot
shows the contours of the 50% and 90% credible regions plotted
over a color-coded posterior density function.
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FIG. 3. Posterior PDFs for the source luminosity distance D
L

and
the the binary inclination ✓JN . In the 1-dimensional marginalised
distributions we show the Overall (solid), IMRPhenom (blue)
and EOBNR (red) probability distributions; the dashed vertical
lines mark the 90% credible interval for the Overall PDF. The 2-
dimensional plot shows the contours of the 50% and 90% credible
regions plotted over a color-coded posterior density function.

FIG. 4. Left: Posterior probability distributions (solid line) for the �
p

and �
e↵

spin parameters compared to their prior distribution
(green line). The dashed vertical lines mark the 90% credible interval. The 2-dimensional plot shows probability contours of the
prior (green) and marginalised posterior (black) distribution. The 2D plot shows the contours of the 50% and 90% credible regions
plotted over a color-coded posterior density function. Right: Posterior probability distributions for the dimensionless component spins
S
1

/m2

1

and S
2

/m2

2

relative to the orbital angular momentum L, marginalized over uncertainties in the azimuthal angles. The bins are
constructed linearly in spin magnitude and the cosine of the tilt angles cos

�1

(Ŝi · L̂), where i = {1, 2}, and, therefore, by design have
equal prior probability.

Finding parameters: GW150914

Phys. Rev. Lett. 116, 241102 (2016)  
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Testing General Relativity
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Phys. Rev. Lett. 116, 221101 (2016)  

Binary pulsars tests: 
 

v/c ⇠ 2⇥ 10�3

BBH coalescence: 

Ṗ ⇠ �10�14 � 10�12

Ṗ ⇠ �0.1� 1.0
v/c ⇠ 0.5



Testing General Relativity
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Phys. Rev. X 6, 041015 (2016) )  



BNS/NSBH (null) O1 searches
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ApJL, L21 (2016) 



Noise where the signal hides: 
O1-O2
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Noise where the signal hides: 
O1-O2
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Second Observing run:  
started Nov 30, 2016
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Aug 1 



GW170814

57Phys. Rev. Lett. 119, 141101 (2017) 



Sky localization
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GW150914

GW151226

LVT151012

GW170104

GW170814
Credit: LIGO/Virgo/NASA/Leo Singer  
(Milky Way image: Axel Mellinger) 



Multi-messenger astronomy
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X-ray black holes
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A&A 587, A61 (2016), Corral-Santana  
et. al 



61
Credit: Visualization: LIGO/Frank Elavsky/Northwestern  
EM Black Holes: https://stellarcollapse.org/sites/default/files/table.pdf | LIGO-Virgo Data: https://losc.ligo.org/events/ 



August 17, 2017
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August 17, 2017
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GW170817
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A kilonova rainbow

65Astrophys. J. Lett. 848, L12 (2017)  

Credit: NSF/LIGO/Sonoma State University/A. Simonnet 



Gravitational and Electromagnetic waves!
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Binary Neutron Star merger: 
the movie
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Credit: NASA/Goddard Space Flight Center 



GW170817
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Phys. Rev. Lett. 119, 161101 (2017)  



GW170817
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Phys. Rev. Lett. 119, 161101 (2017)  



Cosmology with GWs
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Nature 551, 85 (2017)  



Nuclear physics with GWs
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GW-GRB joint observation: 
sGRB models
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ApJL, 848:L13, 2017 



GW-GRB observation: 
Fundamental physics
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ApJL, 848:L13, 2017 



We (and our jewelry) are made 
of star dust 
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We (and our jewelry) are star dust …
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Other gravitational waves to come…
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Astrophysical or  





The era of GW astronomy here! 
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Image credit: LIGO/T. Pyle  

www.ligo.org 
gonzalez@lsu.edu 


