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1. Fundamental questions

Which equations describe the dynamics of cosmic rays for given and specified
electromagnetic fields (test-particle approach)?

How do the cosmic ray transport parameters depend on the statistical properties
of the turbulent electromagnetic fields in space?

Under which conditions is cosmic ray transport diffusive?

What causes parallel and perpendicular spatial diffusion and the acceleration of
CRs?

Numerical cosmic ray transport codes such as DRAGON, CR-PROPA, GAL-
PROP and PICARD numerically solve the diffusion-convection transport equa-
tion containing diffusion and convection terms in the particles

′
momentum and

space coordinates. Are all important physical effects represented?

1.1. Methods used

Because of the complicated nonlinear equations of motion of charged particles
in partially random electromagnetic fields there are only two methods to study
theoretically particle acceleration and transport: (i) numerical PIC (particle-in-
cell) simulations of highly idealized configurations, (ii) quasilinear perturbation
theory valid for small turbulence levels |δ ~B| � ~B0. Both have their advantages
and shortcomings, and they complement each other.
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Obviously, besides limited computer power numerical simulations require the
precise knowledge of many important input plasma parameters as well as the
specification of initial and boundary conditions which at least for the more
distant cosmic objects are not known. By chosing the wrong input plasma
quantities one may end up in an irrelevant range of solution space. Of course,
when all these input quantities are known and given, the simulations result in
a very accurate and detailed description of the acceleration processes on all
spatial, momentum and time scales of interest.

After its original developments for longitudinal plasma waves (Vedenov et al.
1962) the application of quasilinear theory to astrophysical plasmas has turned
out to be very fruitful in explaining the dynamics of energetic charged particles
in these plasmas. Quasilinear transport equations for magnetohydrodynamic
plasma waves were pioneered by Kennel and Engelmann (1966), Jokipii (1966),
Hall and Sturrock (1967), Lerche (1968) and Kulsrud and Pearce (1969).

The quasilinear approach to the interaction of charged particles with partially
random electromagnetic fields is a first-order perturbation calculation in the
ratio qL = (δB/B0)2 and requires values of this ratio qL ≤ 4. In most cosmic
plasmas this requirement is well satisfied as has been established by direct in-
situ measurements in interplanetary plasmas, or due to saturation effects in the
growth of fluctuating fields. The standard quasilinear approach also requires
incoherent mode coupling of the fluctuating electromagnetic fields described as
the superposition of individual plasma wave modes.
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2. General particle transport equations

We start from the equation of motions of charged particles in a medium at rest

d~x

dt
= ~v =

~p

γm
, γ =

√
1 +

p2

m2c2
,

d~p

dt
= qa

[
δ ~E +

~v × ( ~B0 + δ ~B)

c

]
= qa

[
δ ~E +

~p× ( ~B0 + δ ~B)

γmac

]
(1)

We orient the large-scale guide magnetic field, which is uniform on the scales
of the cosmic ray particles gyradii RL = v/|Ω|, ~B0 = B0~ez = (0, 0, B0) along
the z-axis. Let Ωa = qaB0/γmac denote the relativistic gyrofrequency.

Because of the gyrorotation of the particles in the uniform magnetic field, one
is not so much interested in their actual position as in the coordinates of the
guiding center

~X = (X,Y, Z) = ~x+
~v × ~ez

Ωa
= ~x+

c

qaB0
~p× ~ez = ~x+

c

qaB0

 py
−px

0

 (2)

We transform from the phase space variables (x, y, z, px, py, pz) to the guiding
center spatial coordinates (2) and spherical momentum coordinates

φ = arctan(py/px), µ = arccos(pz/p), p = (p2
x + p2

y + p2
z)

1/2 (3)
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The kinetic Klimontovich equation then reads

∂fa
∂t

+ vµ
∂fa
∂Z
− Ωa

∂fa
∂φ

+ p−2 ∂

∂yα

[
p2hα(t)fa

]
−Q0(Z,X, Y, p, µ, φ, t) = 0,

(4)
where we use the Einstein sum convention for indices, and yα ∈ [µ, p, φ,X, Y ]
represent the five phase space variables with non-vanishing stochastic fields
hα(t) from δ ~E and δ ~B.

Q0(z,X, Y, p, µ, φ, t) = S0(z,X, Y, p, µ, φ, t)−N0F −R0F (5)

accounts for sources and sinks (S0) and the effects of the mirror force (N0) and
momentum loss processes (R0), where the latter two operate on much longer
spatial and time scales than the particle interactions with the stochastic fields.

The equations of motion (1) provide for the time evolution of the particle
momentum p, the pitch-angle cosine µ and phase φ
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dp

dt
= hp(t) =

qa
p
~p · δ ~E = qa

(
µδEz +

√
1− µ2 [cosφδEx + sinφδEy]

)
, (6)

dµ

dt
= hµ(t) =

qaδEz
p
− µ

p
hp(t) +

Ωa

B0

√
1− µ2 (cosφδBy − sinφδBx) , (7)

dφ

dt
= −Ωa + hφ(t), hφ(t) = −Ωa

B0
δBz +

Ωµ

B0

√
1− µ2

(cosφδBx + sinφδBy)

+
qa

p
√

1− µ2
(δEy cosφ− δEx sinφ) . (8)

with the three random forces hp(t), hµ(t) and hφ(t). Eq. (8) also accounts for
the regular force term φ̇ = −Ω in Eq. (4).
Likewise, for the guiding center coordinates

dX

dt
= hX(t) =

cδEy
B0

+
p

γmaB0
[µδBx −

√
1− µ2 cosφδBz],

dY

dt
= hY (t) = −cδEx

B0
+

p

γmaB0
[µδBy −

√
1− µ2 sinφδBz], (9)

hZ(t) = 0, and the regular force Ż = vµ accounted for in Eq. (4).
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2.1. Ensemble averaging and quasilinear approximation

The distribution function fa = f (in the following we drop the index a) in Eq.
(4) develops in an irregular way under the influence of the five stochastic force
fields hα(t), but the detailed fluctuations are not of interest.

We seek an expectation value of f in terms of the statistical properties of hα(t),
so we consider an ensemble of distribution functions all beginning with identical
values at time t0. Let each of these functions be subject to a different member
of an ensemble of realizations of hα(t), i.e. fluctuating field histories which are
independent of one another in detail, but identical as to statistical averages. At
any time t > t0, the various functions differ from each other, and we require
an equation for < f >, the average of f over all members of the ensemble.

With f =< f > +δN , where δN denotes the deviation from the ensemble
average, and the regular gyrocenter force operator

L0,g =
∂

∂t
+ vµ

∂

∂Z
− Ω

∂

∂φ
, (10)

Eq. (4) reads

L0,g < f > +L0,gδN+p−2 ∂

∂yα

[
p2hα(t) < f >

]
+p−2 ∂

∂yα

[
p2hα(t)δN

]
−Qa = 0

(11)
Ensemble-averaging Eq. (11) using < hα(t) >=< δN >= 0 then yields
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L0,g < f > −Qa = −p−2 ∂

∂yα

[
p2 < hα(t)δN >

]
, (12)

Substracting Eq. (12) from Eq. (11) gives the equation for the deviation (see
lecture 2)

L0,g(δN −N0) = −hα(t)
∂

∂yα
< f > −hα(t)

∂

∂yα
δN+ < hα(t)

∂

∂yα
δN >,

(13)
where we used the property p−2 ∂

∂yα
(p2hα(t)) = 0.

With the inverted regular time-integration operator L−1
0,g the formal solution of

Eq. (13) is given by

δN−N0 = −L−1
0,ghσ(t)

∂ < f >

∂yσ
−L−1

0,ghσ(t)
∂δN

∂yσ
+L−1

0,g < hσ(t)
∂δN

∂yσ
>, (14)

where we changed the summation index. The last term in Eq. (14) can be
ignored as it does not contribute to the ensemble average on the right hand
side of Eq. (12). Eq. (14) has the series solution

δN−N0 = −L−1
0,ghσ(t)

∂ < f >

∂yσ
−L−1

0,ghσ(t)
∂

∂yσ
[N0−L−1

0,ghη(t)
∂ < f >

∂yη
]+. . .

(15)
Within the quasilinear approximation we only keep terms of first order in stochas-
tic fields, so that
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δN −N0 ' −L−1
0,ghσ(t)

∂ < f >

∂yσ
(16)

2.2. Inverted regular force operator

The inverted regular force operator L−1
0,g is obtained by integrating along the

characteristics of the operator L0,g (Achatz et al. 1991), which is the unper-
turbed gyrocenter orbit (Xu = X0, Yu = Y0, Zu = Z0 + vµ(t − t0), pu =
p0, µu = µ0, φu = φ0 − Ω(t− t0)). We consider

L0,gδA( ~X, ~p, t) = −hα(~x, ~p, t)
∂

∂yα
< f > (t), δA = δN −N0 (17)

and introduce the Fourier transforms in space1

δA( ~X, ~p, t) =

∫
d3kA1(~k, ~p, t)eı

~k· ~X , δhα(~x, ~p, t) =

∫
d3kHα(~k, ~p, t)eı

~k·~x

=

∫
d3kHα(~k, ~p, t) exp

[
ı~k · ~X +

ı

Ω
(kyvx − kxvy)

]
=

∫
d3kHα(~k, ~p, t) exp

[
ı~k · ~X +

ık⊥v
√

1− µ2 sin(ψ − φ)

Ω

]
, (18)

1It is important to distinguish between the gyrocenter ( ~X) and and particle (~x) coordi-
nates.
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where we use Eq. (2) and introduce cylindrical coordinates for the wave vector

~k = (k⊥ cosψ, k⊥ sinψ, k‖) (19)

After a little algebra we obtain

δN( ~X, ~p, t) = N0−T hσ(s)
∂ < f > (s)

∂yσ
= N0−

∫
d3keı

~k· ~X
∫ t

t0

dsHσ(~k, ~p, s)

× eık‖vµ(s−t)+ ık⊥v
√

1−µ2 sin(ψ−φ0+Ω(s−t0))

Ω
∂ < f > (s)

∂yσ
(20)

Then the ensemble average on the right hand side of Eq. (12) can be readily
calculated as

< hα(t)δN >=< hα(t)N0 > − < hα(t)T hσ(s) >
∂ < f > (s)

∂yσ
, (21)

yielding the quasilinear transport equation for the ensemble-averaged < f >:
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L0,g < f >= −p−2 ∂

∂yα

[
p2 < hα(t)N0 >

]
+ p−2 ∂

∂yα

[
p2 < hα(t)T h∗σ(s) >

∂ < f > (s)

∂yσ

]
, (22)

where we have replaced hσ(s) = h∗σ(s) by its complex conjugate, because
the stochastic forces are real-valued quantities. The first term represents the
quasilinear drag term (∝< f >) discussed in lecture 2. The 2nd term involves
a complicated integro-differential operator. In the following we ignore the drag
term.

In order to get from Eq. (22) an useful differential equation for < f >, we
employ a number of approximations. the adiabatic approximation and the
assumptions of homogeneous and quasi-stationary turbulence. This
leads us to the Fokker-Planck transport equation for CRs, which is diffusive, if a
small enough finite decorrelation time of second-order correlation
functions exists.
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3. Fokker-Planck transport equation

3.1. Step 1: Adiabatic approximation

We follow the adiabatic approximation of Hall and Sturrock (1967) and Achatz
et al. (1991), that < f > (s) '< f > (t) varies only negligibly over the time
s-integration interval, providing for Eq. (22) the Fokker-Planck equation

L0 < f > (t)−Qa = p−2 ∂

∂yα

[
p2P̄ασ

∂ < f > (t)

∂yσ

]
, (23)

with the full Fokker-Planck coefficients P̄ασ =< hα(t)T h∗σ(s) >. Using again
the Fourier transform (18) in the form

δhα(~x, ~p, t) =

∫
d3k1Hα(~k1, ~p, t) exp

[
ı~k1 · ~X +

ık1,⊥v
√

1− µ2 sin(ψ1 − φ(t))

Ω

]
,

(24)
we obtain with Eq. (20)

P̄ασ =

∫
d3k1

∫
d3k eı(

~k1−~k)· ~X+
ık1,⊥v

√
1−µ2 sin(ψ1−φ0+Ω(t−t0))

Ω

∫ t

t0

ds

× < Hα(~k1, ~p, t)Hσ(~k, ~p, s)e−ık‖vµ(s−t)− ık⊥v
√

1−µ2 sin(ψ−φ0+Ω(s−t0))

Ω >, (25)

where we use that at time s = t the CR particle phase is given by φ(t) =
φ0 + Ω(t− t0). Eq. (25) involves 7 integrals.
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3.2. Step 2: Homogeneous turbulence

As second assumption we use that the turbulent electric and magnetic fields
are homogenously distributed, meaning that independent from the position of
the gyrocenter ~X the particles are subject to turbulence realizations with the
same statistical properties. This allows us to average the full Fokker-Planck
coefficients (25) over the spatial position of the guiding center using

1

(2π)3

∫ ∞
−∞

d3X eı(
~k1−~k)· ~X = δ(~k1 − ~k), (26)

implying that turbulence fields at different wavevectors are uncorrelated. We
obtain for Eq. (25) (only 4 intergrals left)

Pασ =
1

(2π)3

∫ ∞
−∞

d3X P̄ασ =

∫
d3k e

ık⊥v
√

1−µ2 sin(ψ−φ0+Ω(t−t0))

Ω

∫ t

t0

ds

× < Hα(~k, ~p, t)Hσ(~k, ~p, s)e−ık‖vµ(s−t)− ık⊥v
√

1−µ2 sin(ψ−φ0+Ω(s−t0))

Ω > (27)

3.3. Step 3: Quasi-stationary turbulence

Here the correlation functions < Hα(t)H∗σ(s) > in Eq. (27) depend only on the
absolute value of the time difference |τ | = |t− s|, so that with the substitution
s = t− τ we have < Hα(t)H∗σ(t− τ) >=< Hα(0)H∗σ(−τ) >, implying for the
Fokker-Planck coefficients (27)
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Pασ =

∫
d3k

∫ t−t0

0
dτ < Hα(~k, 0)H∗σ(~k,−τ) exp

[
ıvµk‖τ

]
× exp

[
ık⊥v

√
1− µ2

Ω
(sin(φ1 − ψ + Ωτ)− sin(φ1 − ψ))

]
>, (28)

where φ1 = φ0 + Ωt0 includes the irrelevant constant Ωt0.

3.4. Step 4: Finite turbulence decorrelation time

If a finite decorrelation time tc exists, such that the correlation functions <
Hα(0)H∗σ(−τ) >→ 0 fall to a negligible magnitude for τ →∞, we are allowed
to replace the upper integration boundary in the τ -integral in Eq. (28) by
infinity so that

Pασ =

∫ ∞
0

dτ < hα(0)h∗σ(−τ) >=

∫
d3k

∫ ∞
0

dτ < Hα(~k, 0)H∗σ(~k,−τ)

× exp

[
ıvµk‖τ +

ık⊥v
√

1− µ2

Ω
(sin(φ1 − ψ)− sin(φ1 − ψ + Ωτ))

]
> (29)
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3.5. Step 5: Ensemble averaging by initial random phases

The brackets < . . . > in Eq. (29) indicate that the Fokker-Planck coefficients
have to be ensemble-averaged over different realizations of the stochastic fields.
The appropriate averaging variable is the phase φ1, determined apart from a
constant by the initial phase of the CR particles, which is a random variable that
can take on any value between 0 and 2π. We identify for any quantity A(φ1)
that < A(φ1) >= (2π)−1

∫ 2π
0 dφ1A(φ1). The Fokker-Planck coefficients (29)

then read

Pασ =
1

2π

∫
d3k

∫ ∞
0

dτ

∫ 2π

0
dφ1Cα,σ(~k, τ)

× exp

[
ıvµk‖τ +

ık⊥v
√

1− µ2

Ω
(sin(φ1 − ψ)− sin(φ1 − ψ + Ωτ))

]
(30)

with the respective second-order correlation functions of the stochastic forces
Cα,σ(~k, τ) = Hα(~k, 0)H∗σ(~k,−τ).

The Fokker-Planck coefficients (30) are of so-called Taylor-Green-Kubo (TGK)
form (Taylor 1922, Green 1951, Kubo 1957). As demonstrated, the two as-
sumptions of quasi-stationary homogeneous turbulence and the existence of a
finite turbulence decorrelation time tc guarantee diffusive transport behaviour.
The Fokker-Planck transport equation (23) becomes

L0,g < f > (t)−Qa = p−2 ∂

∂yα

[
p2Pασ

∂ < f > (t)

∂yσ

]
(31)
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3.6. Fourier transforms of the stochastic fields

The individual Fourier transforms of the five stochastic fields hα(t) can be
calculated from Eq. (18), yielding e.g.

Hp(~k, 0) =
Ωpc

vB0

(
µδEz(~k, 0) +

√
1− µ2

[
cos(φ1 − ψ)δEx(~k, 0)

+ sin(φ1 − ψ)δEy(~k, 0)
])
,

H∗p (~k,−τ) =
Ωpc

vB0
qa

(
µδE∗z (~k,−τ) +

√
1− µ2

[
cos(φ1 − ψ + Ωτ)δE∗x(~k,−τ)

+ sin(φ1 − ψ + Ωτ)δE∗y(~k,−τ)
])
, (32)

In general, 25 different correlation functions Cα,σ(τ) and Fokker-Planck coeffi-
cients Pα,σ result involving different magnetic and electric correlation functions.
Depending on the properties of the chosen electromagnetic turbulence model,
not all of these 25 Fokker-Planck coefficients are nonzero, and some of them
are much larger than others.

The induction law relates

~k × δ ~E(~k, t) =
ı

c
∂tδ ~B(~k, t) (33)
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As shown in lecture 2 magnetized space plasmas contain low-frequency linear
(δB � B0) transverse MHD waves (such as shear Alfven and magnetosonic
plasma waves) with dispersion relations ω2

R = V 2
Ak

2
‖ and ω2

R = V 2
Ak

2, respec-

tively. The induction law (33) then indicates for MHD waves δE = (VA/c)δB.

We estimate the relative strength of the stochastic forces (32), adopting values
of order unity for µ,

√
1− µ2, cos(φ1 − ψ + Ωτ) and sin(φ1 − ψ + Ωτ). For

energetic CR particles with v � VA

Hp ' Ω
δB

B0
p(VA/v), Hµ ' Hφ ' Ω

δB

B0
, HX,Y ' v

δB

B0
(34)

The corresponding Fokker-Planck coefficients then scale as

Dµµ ' Dφφ ' D0 = Ω2 δB
2

B2
0

, Dpp ' D0
V 2
Ap

2

v2
, DX,Y ' R2

LD0,

Dµp ' Dφp ' D0
VAp

v
, DµX ' DφX = RLD0 (35)

Consequently, the associated times scales for pitch-angle scattering (Tµ '
D−1
µµ ), gyrophase scattering (Tφ ' D−1

φφ ), momentum diffusion (Tp ' p2/Dpp)

and perpendicular spatial gyrocenter diffusion (TX ' X2/DXX) scale as

Tµ ' Tφ = T0 ' D−1
0 , Tp '

v2

V 2
A

T0 � T0, TX '
X2

R2
L

T0 � T0 (36)
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Therefore, in the presence of low-frequency MHD fluctuations the particles will
relax most quickly on the time scale min[Ω−1, T0] to an isotropic, gyrotropic
distribution function, which then on considerably longer time scales TX and Tp
undergoes diffusion in position space and momentum space, respectively.

Hence, a perturbation scheme based on B0 � δB � δE corresponds to the
reduction

< f > ( ~X, p, µ, φ, t)→ f0( ~X, p, µ, t)→ F ( ~X, p, t) (37)

to gyrotropic f0( ~X, p, µ, t) and to isotropic, gyrotropic distributions functions
F ( ~X, p, t), respectively, in excellent agreement with the observed isotropy of
CRs.

3.7. Strongly magnetized systems

For strongly magnerized systems δB � B0 we employ the small Larmor ra-
dius approximation (Chew et al. 1956, Kennel and Engelmann 1962) that
all changes are considered small over space scales comparable with the parti-
cle Larmor radii or time scales comparable with typical gyroperiods. Therefore
the Larmor radius and gyroperiod are convenient small expansion parameters.
The Larmor orbiting of particles is so rapid that all inhomogeneities in the φ-
distribution of particles are smoothed out on the macroscopic scale, and the
distribution functions are independent of the gyrophase φ to lowest order.
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Singleing out the phase space variable φ by introducing the reduced set of
variables xα,σ ∈ [X,Y, µ, p] and using the explicit form of the regular force
operator (10), the Fokker-Planck transport equation (31) is

∂t < f > +vµ∂Z < f > −Ω∂φ < f > −Qa = p−2 ∂

∂xα
p2Pασ

∂ < f >

∂xσ

+
∂

∂φ
Pφσ

∂ < f >

∂xσ
+ p−2 ∂

∂xα
p2Pαφ

∂ < f >

∂φ
+

∂

∂φ
Pφφ

∂ < f >

∂φ
(38)

With the expansion < f >= f0 + Ω−1f1 inserted in Eq. (38) we then find
to lowest order ∂f0/∂φ = 0. Thus the lowest-order distribution function f0 is
independent of the gyrophase φ. To find the spatial and time dependence of
f0 we go to next order giving

∂tf0 + vµ∂Zf0 − ∂φ
[
f1 − Pφσ

∂f0

∂xσ

]
−Qa = p−2 ∂

∂xν
p2Pνσ

∂f0

∂xσ
(39)

The physical requirement that f1 be periodic in φ then removes the third term
on the left hand side when averaging Eq. (39) from 0 to 2π in φ, leading to
the Larmor-phase-averaged quasilinear Fokker-Planck transport equation

∂tf0 + vµ∂zf0 −Q(X,Y, Z, p, µ, t) = p−2 ∂

∂xα
p2Dασ

∂f0

∂xσ
(40)
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with the gyro-averaged source term

Q(Z,X, Y, p, µ, t) =
1

2π

∫ 2π

0
dφQa(z,X, Y, p, µ, φ, t), (41)

and the gyro-averaged Fokker-Planck coefficients

Dασ =
1

2π

∫ 2π

0
dφPασ =

1

4π2

∫
d3k

∫ ∞
0

dτ

∫ 2π

0
dφ

∫ 2π

0
dφ1Cα,σ(~k, τ)

× exp

[
ıvµk‖τ +

ık⊥v
√

1− µ2

Ω
(sin(φ1 − ψ)− sin(φ1 − ψ + Ωτ))

]
(42)

Inserting the source term (5) in Eq. (40) provides for the Larmor-phase-
averaged Fokker-Planck transport equation (Schlickeiser and Jenko 2010)

∂f0

∂t
+ vµ

∂f0

∂Z
+N f0 +Rf0 − S( ~X, p, µ, t) = p−2 ∂

∂xα
p2Dασ

∂f0

∂xσ
, (43)
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where (with charge sign εa = qa/|qa|)

N f0 =
v(1− µ2)

2

[
1

L3

∂f0

∂µ
+ εaRL(

1

L2

∂f0

∂X
− 1

L1

∂f0

∂Y
)

]
(44)

accounts for the effects of the mirror force in the large spatial gradients (L−1
1 =

−∂x lnB0, L
−1
2 = −∂y lnB0, L

−1
3 = −∂z lnB0) of the guide field, and

Rf0 = p−2∂p
[
p2ṗlossf0

]
+
f0

Tc
(45)

representing continuous (ṗloss) and catastrophic (Tc) momentum losses of par-
ticles. S( ~X, p, µ, t) represents additional sources and sinks of particles.

3.8. Relativistic flows

The Fokker-Planck equation (43) holds in the comoving frame of reference,
i.e. the rest system of the moving plasma supporting the electromagnetic fluc-
tuations. In astrophysics we deal very often with outflow sources, where the
background plasma, supporting the plasma fluctuations, moves with respect to
the observer with the bulk speed ~U = U~ez along the ordered magnetic field
~B0 = B0~ez.
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In such cases, it is convenient to transform to the mixed comoving coordinate
system (Kirk et al. 1988), in which time t∗ and the space coordiantes ~x∗ are
measured in the laboratory (=observer) system and the particle’s momentum
coordinates ~p are measured in the rest frame of the streaming plasma. This is
particularly important for relativistic flows such as gamma-ray burst sources and
the jets of active galactic nuclei. Consequently, the kinetic equation (43) must
be transformed into these variables providing (Webb 1985, Kirk et al. 1988)

Γ

[
1 +

U∗vµ

c2

] [
∂f0

∂t∗
− 1

c2

∂U∗

∂t∗
Γ2E

∂f0

∂pz

]
+Γ [U∗ + vµ]

[
∂f0

∂z∗
− 1

c2

∂U∗

∂z∗
Γ2E

∂f0

∂pz

]

+N f0 +Rf0 − S(~x∗, p, µ, t∗) =
1

p2

∂

∂xα
p2Dασ

∂f0

∂xσ
, (46)

where E = pc2/v denotes the particle energy and Γ = (1− (U∗2/c2))−1/2 and

∂

∂pz
= µ

∂

∂p
+

1− µ2

p

∂

∂µ
(47)

Consequently, Eq. (46) becomes
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Γ

[
1 +

Uvµ

c2

] [
∂f0

∂t
− 1

v

∂U

∂t
Γ2

(
µp
∂f0

∂p
+ (1− µ2)

∂f0

∂µ

)]
+Γ [U + vµ]

[
∂f0

∂Z
− 1

v

∂U

∂z
Γ2

(
µp
∂f0

∂p
+ (1− µ2)

∂f0

∂µ

)]
+N f0 +Rf0 − S(~x, p, µ, t) = p−2 ∂

∂xα
p2Dασ

∂f0

∂xσ
(48)

where, for ease of notation, we have dropped the t∗-notation, keeping in mind
that the position and time variables are to be taken in the lab coordinate system.
Recall that xα, xσ ∈ [p, µ,X, Y ], so that 16 different Fokker-Planck coefficients
remain.

3.9. Interlude

Eq. (43) in a medium at rest and Eq. (48) in a moving medium are gen-
eral Fokker-Planck transport equations for the Larmor-phase-averaged particle
phase space density, which were based on six physical assumptions about the
fluctuating electromagnetic field turbulence:
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• (1) adiabatic approximation,

• (2) homogeneous and quasi-stationary turbulence,

• (3) existence of a small enough finite decorrelation time of second-order
correlation functions,

• (4) random phase (between particles and fluctuations),

• (5) strongly magnetized systems with B0 � δB

• (6) parallel flows with respect to ~B0.

For all distant cosmic objects (outside the solar system) it is impossible to check
on the validity of these assumptions.

Further generalizations including nonparallel flows, shear flows, partially random
flows are worth investigating.

Solving the Fokker-Planck equations analytically is mathematically equivalent to
the numerical solution of the corresponding system of Ito′s stochastic differential
equations (Gardiner 1983).
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4. Fokker-Planck coefficients

The φ-integrations in the gyro-averaged Fokker-Planck coefficients (42) can be
expressed in terms of Bessel functions of the first kind (see RS 2010) using the
identity

eız sin η =
∞∑

n=−∞
Jn(z)eınη (49)

and the addition theorems

J0(λR) =

∞∑
m=−∞

Jm(λr1)Jm(λr2)eımθ, R =
√
r2

1 + r2
2 − 2r1r2 cos θ,

Jν(λR)eıνγ =

∞∑
n=−∞

Jn(λr1)Jn+ν(λr2)eınθ, sin γ =
r1

R
sin θ (50)

For magnetostatic turbulence (δEi = 0) and axisymmetric turbulence Cα,σ(~k, τ) =
Pα,σ(k‖, k⊥, τ) one obtains
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Dµµ =
πΩ2(1− µ2)

B2
0

<
∫ ∞

0
dτ

∫ ∞
−∞

dk‖

∫ ∞
0

dk⊥ k⊥J0

(
k⊥v⊥

Ω
[2(1− cos Ωτ)]1/2

)
×
[
eı(vµk‖+Ω)τPLL(k‖, k⊥, τ) + eı(vµk‖−Ω)τPRR(k‖, k⊥, τ)

]
=
πΩ2(1− µ2)

B2
0

<
∞∑

n=−∞

∫ ∞
−∞

dk‖

∫ ∞
0

dk⊥ k⊥

∫ ∞
0

dτe−ı(nΩ+k‖v‖)τ

×
[
J2
n−1

(
k⊥v⊥

Ω

)
PLL(k‖, k⊥, τ) + J2

n+1

(
k⊥v⊥

Ω

)
PRR(k‖, k⊥, τ)

]
(51)

First form ideal for numerical computations avoiding infinite sums and calcu-
lating a strict upper limit using J0(A) ≤ 1 and cos(A) ≤ 1 for all arguments
A.
With the positively counted damping rate

PLL,RR(k‖, k⊥, τ) = P 0
LL,RR(k‖, k⊥)e(ıωR(k‖,k⊥)−ΓLH,RH(k‖,k⊥))τ , (52)

the τ -integration in the second form of Eq. (51) provides the resonance function

R(ωR,ΓLH,RH) = <
∫ ∞

0
dτe−[ı(nΩ+vµk‖−ωR)+ΓLH,RH ]τ

=
ΓLH,RH

(vµk‖ − ωR + nΩ)2 + Γ2
LH,RH

, (53)
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so that in the weak-damping limit

lim
ΓLH,RH→0

R(ωR,ΓLH,RH) = πδ(vµk‖ − ωR + nΩ) (54)

Hence, in this limit

Dµµ =
π2Ω2(1− µ2)

B2
0

∞∑
n=−∞

∫ ∞
−∞

dk‖

∫ ∞
0

dk⊥ k⊥

[
J2
n−1

(
k⊥v⊥

Ω

)
P 0
LL(k‖, k⊥)δ(vµk‖ − ωR,LH + nΩ)

+ J2
n+1

(
k⊥v⊥

Ω

)
P 0
RR(k‖, k⊥)δ(vµk‖ − ωR,RH + nΩ)

]
(55)

Further evaluation requires the specification of the turbulence geometry (dis-
tribution in k‖ and k⊥), entering P 0

LL and P 0
RR, and of the dispersion relations

of LH and RH polarized collective wave modes. In RS (2002) this and other
Fokker-Planck coefficients are calculated for slab (k⊥ = 0) waves and isotropi-
cally distributed waves.
For slab waves one uses Jn(z) = δn,0, so that

Dslab
µµ =

π2Ω2(1− µ2)

B2
0

∫ ∞
−∞

dk‖

∫ ∞
0

dk⊥ k⊥[
P 0
LL(k‖)δ(vµk‖ − ωR,LH + Ω) + P 0

RR(k‖)δ(vµk‖ − ωR,RH − Ω)
]

(56)



Fundamental . . .

General particle . . .

Fokker-Planck . . .

Fokker-Planck . . .

Diffusion . . .

Focused acceleration

Momentum spectra

Summary and . . .

One needs to account for the charge sign of the CR particle (entering through
the relativistic gyrofrequency) and the intensities of forward and backward mov-
ing, RH- and LH-waves (see e.g. RS 1989, Dung and RS 1990). Figs. 1 and 2
show two illustrative examples.

Figure 1: Pitch angle scattering coefficient for CR protons due to RH polarized Alfven waves
streaming with equal intensities in both directions. From RS (1989).



Fundamental . . .

General particle . . .

Fokker-Planck . . .

Fokker-Planck . . .

Diffusion . . .

Focused acceleration

Momentum spectra

Summary and . . .

19
8 

9A
pJ

. 
. .

33
6.

 .
24

33
 

COSMIC-RAY TRANSPORT AND ACCELERATION. I. 253 

/¿ = COS 0 

Fig. 4.—Pitch angle diffusion coefficient Dß/l for energetic protons due to right-hand and left-hand polarized waves streaming with different intensities in 
directions parallel ( + ) and antiparallel ( - ) to the ordered magnetic fields. Curves are calculated in the case g = 1.5 with Iq = 21 ¿ and ¡0 = 0.51 ¿. 

gap occurs over the whole /¿-range, leading to a positive nonzero value of D^, Dßp, and Dpp. For the latter two we obtain 

Dßp 2 
n Q2~g/o (1 — fi2)p 

B2
0v 

[„.(! - - vr' - °4(i++■ 

Dpp 2 
n Q2 9Jq(1 - ß2) p2vl 

B2o 
lo 

V\ — Vfl \q + 7T I ^ 10 
\q-l 

As can be seen, these coefficients also exhibit no resonance gap. 

vi) Left-Hand and Right-Hand Waves Streaming with the Same Intensity in Both Directions(Iq+ = Iq~ = Iq+ = = fo ^ 
This is a special case of (v), with Iq /Iq = 1, so that 

^ n Q2~qI0 Dn„ = — —(1 - M ) 
2 Bl 

= nÜr*lo 
^ 2 Bq 

I-Pj) |1;A-^|‘'-1+(l+/i 
Va 

I "a + vp\q 

(1 - p2) ^ 
V 

dpp = v i\va - wr1 + \ va + wr1] 

i - 
ßvA \vA-VB\q 1 - ( 1 + — )I«a + ^I 

(58b) 

(58c) 

',2_ 

~J2 ' ■ ■ v 

which are plotted in Figure 5 for vjv = 0.1 and q = 1.5 and q = 2.5. Again, the diffusion coefficients exhibit no resonance gap. 

(59a) 

(59b) 

(59c) 

vii) Summary 

This discussion has revealed that resonance gaps do not occur if waves of both polarization states travelling in both directions are 
present. With waves of only one polarization state traveling in one or both directions, a whole resonance gap interval occurs (cases 
[i], [iii], and [iv]). With waves of both polarization states traveling in only one direction (case [ii]) the resonance gap occurs at one 
point in /¿-space. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

Figure 2: Pitch angle scattering coefficient for CR protons due to RH and LH polarized Alfven
waves streaming with different intensities in both directions. From RS (1989).

Both RH- and LH-polarized slab Alfven waves are needed to scatter CR protons
(and CR electrons with Lorentzfactor γ > 1836) at all pitch angles µ.
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5. Diffusion approximation

Our earlier qualitative estimate of Fokker-Planck coefficients for energetic par-
ticles with v � VA indicated that the pitch angle Fokker-Planck coefficient
Dµµ is the largest one.

We therefore make the basic assumption of diffusion theory that the gyrotropic
particle distribution function f0( ~X, p, µ, t) under the action of low-frequency
magnetohydrodynamic waves adjusts very quickly to a distribution function
through pitch-angle diffusion which is close to the isotropic distribution in the
rest frame of the moving background plasma. Defining the isotropic part of the
phase space density F ( ~X, z, p, t) as the µ-averaged phase space density

F ( ~X, p, t) ≡ 1

2

∫ 1

−1
dµ f0( ~X, p, µ, t), (57)

we follow the analysis of Jokipii (1966) and Hasselmann and Wibberenz (1968)
to split the total density f0 into the isotropic part F and an anisotropic part g,

f0( ~X, p, µ, t) = F ( ~X, p, t) + g( ~X, p, µ, t), (58)

where because of Eq. (57) ∫ 1

−1
dµ g( ~X, p, µ, t) = 0 (59)



Fundamental . . .

General particle . . .

Fokker-Planck . . .

Fokker-Planck . . .

Diffusion . . .

Focused acceleration

Momentum spectra

Summary and . . .

Singleing out the phase space variable µ by introducing the reduced set of
variables zα,σ ∈ [X,Y, p] the Larmor-phase averaged Fokker-Planck coefficients
transport equation (48) reads

Γ

[
1 +

Uvµ

c2

] [
∂f0

∂t
− 1

v

∂U

∂t
Γ2

(
µp
∂f0

∂p
+ (1− µ2)

∂f0

∂µ

)]
+Γ [U + vµ]

(
∂f0

∂Z
− 1

v

∂U

∂z
Γ2

(
µp
∂f0

∂p
+ (1− µ2)

∂f0

∂µ

)]
+N f0 +Rf0 − S( ~X, p, µ, t) =

p−2 ∂

∂zα
p2Dασ

∂f0

∂zσ
+

∂

∂µ
Dµµ

∂f0

∂µ
+

∂

∂µ
Dµσ

∂f0

∂zσ
+ p−2 ∂

∂zα
p2Dαµ

∂f0

∂µ
(60)

Instead of manipulating this complicated equation, we follow the historical de-
velopment and consider simplified versions of the full transport equation.

Upshot: the more terms we keep in the Fokker-Planck transport equation the
more terms result in the diffusion-convection transport equation for the isotropic
part F ( ~X, p, t) result.
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5.1. Magnetostatic turbulence in a medium at rest (Jokipii
1966)

If only magnetostatic turbulence (δ ~E = 0) is considered, Dµµ is the only non-
vanishing Fokker-Planck coefficient. Ignoring the effects of radiation losses, the
mirror force, adopting an isotropic source term, and considering a medium at
rest, the Fokker-Planck equation (60) simplifies to

∂f0

∂t
+ vµ

∂f0

∂Z
− S( ~X, p, t) =

∂

∂µ
Dµµ

∂f0

∂µ
(61)

Inserting the ansatz (58) provides

∂F

∂t
+ vµ

∂F

∂Z
+
∂g

∂t
+ vµ

∂g

∂Z
− S( ~X, p, t) =

∂

∂µ
Dµµ

∂g

∂µ
(62)

Now averaging over µ yields (note that Dµµ ∝ (1 − µ2) becomes zero for
µ→ ±1)

∂F

∂t
+
v

2

∂

∂Z

∫ 1

−1
dµµg − S( ~X, p, t) = 0 (63)

Next we subtract Eq. (63) from Eq. (62) to obtain

vµ[
∂F

∂Z
+
∂g

∂Z
] +

∂g

∂t
− v

2

∂

∂Z

∫ 1

−1
dµµg =

∂

∂µ
Dµµ

∂g

∂µ
, (64)

which together with Eq. (63) is still exact.
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5.1.1. Anisotropy

The diffusion approximation applies if the isotropic particle density is slowly
evolving, i.e. (∂F/∂t) = O(F/T ) and (∂F/∂Z) = O(F/L0) with typical
length scales L0 >> λ and time scales T >> τ much larger than the mean
free path λ = vτ and the pitch angle scattering relaxation time τ ' O(1/Dµµ),
respectively. In this case the particles have enough time to adjust locally to a
near-equilibrium, so that the anisotropy is small i.e. g << F .
If we then regard g as of order τ , when F is of order 1, we may characterize the
differential operators in Eq. (64) by different time scales. Therefore to lowest
order we approximate Eq. (64) by

vµ
∂F

∂Z
' ∂

∂µ

[
Dµµ

∂g

∂µ

]
(65)

Integrating over µ we obtain

Dµµ
∂g

∂µ
= c1 +

vµ2

2

∂F

∂Z
, (66)

where the integration constant c1 = −v/2(∂F/∂Z) is determined from the
requirement that the left-hand side of Eq. (66) vanishes for µ = ±1, yielding

∂g

∂µ
= −v

2

1− µ2

Dµµ(µ)

∂F

∂Z
(67)
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A further integration provides

g( ~X, p, µ, t) ' c2 −
v

2

∂F

∂Z

∫ µ

−1
ds

1− s2

Dµµ(s)
, (68)

where the condition (59), i.e.
∫ 1
−1 dµg(µ) = 0, determines c2. The CR

anisotropy (68) then becomes

g( ~X, p, µ, t) =
v

4

∂F

∂Z

[∫ 1

−1
dµ

1− µ2

Dµµ(µ)
− 2

∫ µ

−1
ds

1− s2

Dµµ(s)

]
, (69)

resulting from the gradient of F with respect to Z (”streaming anisotropy”).

5.1.2. Diffusion transport equation

The anisotropy (69) readily provides the first moment∫ 1

−1
dµµg(µ) = −v

2

∂F

∂Z

∫ 1

−1
dµµ

∫ µ

−1
ds

1− s2

Dµµ(s)

= −v
2

∂F

∂Z

∫ 1

−1
dµ

(1− µ2)2

Dµµ(µ)
, (70)

where we partially integrated with respect to µ. Inserting the result in Eq. (63)
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provides the diffusion transport equation for the isotropic part of the phase
space distribution

∂F

∂t
− ∂

∂Z
[κ‖

∂F

∂Z
] = S( ~X, p, t), (71)

with the parallel spatial diffusion coefficient

κ‖ =
vλ‖

3
=
v2

8

∫ 1

−1
dµ

(1− µ2)2

Dµµ(µ)
(72)

determined by the pitch-angle average of the Fokker-Planck coefficient Dµµ.

5.2. Magnetostatic turbulence in a medium at rest with weak
adiabatic focusing (Earl 1976)

Now we include the adiabatic focusing term from the mirror force, so that the
Fokker-Planck equation (60) reduces to

∂f0

∂t
+ vµ

∂f0

∂Z
+
v(1− µ2)

2L3

∂f0

∂µ
− S( ~X, p, t) =

∂

∂µ
Dµµ

∂f0

∂µ
(73)

Repeating the analysis of the last subsection provides

∂F

∂t
+
v

2
[
∂

∂Z
+

1

L3
]

∫ 1

−1
dµµg − S( ~X, p, t) = 0 (74)

and
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vµ[
∂F

∂Z
+
∂g

∂Z
]+
∂g

∂t
+
vµg

L3
−v

2
[
∂

∂Z
+

1

L3
]

∫ 1

−1
dµµg =

∂

∂µ

(
Dµµ

∂g

∂µ
− v(1− µ2)g

2L3

)
,

(75)
which we approximate in the limit of weak focusing again by the streaming
anisotropy (69). With the same first moment (70) we find the pseudo-diffusion
equation for the isotropic part of the phase space distribution

∂F

∂t
− ∂

∂Z
[κ‖

∂F

∂Z
]−

κ‖

L3

∂F

∂Z
= S( ~X, p, t), (76)

where the spatial convection speed V = κ‖/L3 is positive in a diverging guide
magnetic field and negative in a converging guide magnetic field.

5.3. Magnetostatic turbulence in a moving medium with U � c
with weak adiabatic focusing (Litvinenko and RS 2013)

For magnetostatic turbulence the Fokker-Planck equation (60) in a moving
medium with nonrelativistic speed U � c reduces to

∂f0

∂t
+ [U + vµ]

[
∂f0

∂Z
− 1

v

∂U

∂Z

(
µp
∂f0

∂p
+ (1− µ2)

∂f0

∂µ

)]
+
vµf0

L3
=

∂

∂µ

(
Dµµ

∂f0

∂µ
− v(1− µ2)f0

2L3

)
− S( ~X, p, t) (77)
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Substituting the ansatz (58) provides after averaging and subtraction

∂F

∂t
+ U

∂F

∂Z
− 1

3

∂U

∂Z
p
∂F

∂p
+
v

2
[
∂

∂Z
+

1

L3
]

∫ 1

−1
dµµg

− 1

2

∂U

∂Z

[
U

v
(2 + p

∂

∂p
)

∫ 1

−1
dµµg + (3 + p

∂

∂p
)

∫ 1

−1
dµµ2g

]
= S( ~X, p, t) (78)

In the weak focusing limit we use the streaming anisotropy (69), implying be-
sides the first moment (70)∫ 1

−1
dµµ2g = −v

6

∂F

∂Z

∫ 1

−1
dµ
µ(1− µ2)2

Dµµ(µ)
(79)

Consequently, Eq. (78) becomes

∂F

∂t
+ [U −

κ‖

L3
]
∂F

∂Z
− 1

3

∂U

∂Z
p
∂F

∂p
− ∂

∂Z
[κ‖

∂F

∂Z
] +

U

v

∂U

∂Z
(2 + p

∂

∂p
)[
κ‖

v

∂F

∂Z
]

+
1

12

∂U

∂Z
(3 + p

∂

∂p
)[v

∫ 1

−1
dµ
µ(1− µ2)2

Dµµ(µ)

∂F

∂Z
] = S( ~X, p, t) (80)

For U � v and symmetric Fokker-Planck coefficients Dµµ(−µ) = Dµµ(µ)
the last two terms on the LHS can be ignored and we obtain the Parker
diffusion-convection equation
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∂F

∂t
+

[
U −

κ‖

L3

]
∂F

∂Z
− 1

3

∂U

∂Z
p
∂F

∂p
− ∂

∂Z
[κ‖

∂F

∂Z
] = S( ~X, p, t) (81)

Note that the momentum convection term leads to cooling of particles in ex-
panding flows with positive ∂U/∂z > 0 as in the solar wind, but to particle
acceleration in converging flows with negative ∂U/∂z < 0, which is the physical
reason for diffusive shock acceleration (first-order Fermi acceleration).

5.4. Full transport equation for nonrelativistic flows (RS and
Shalchi 2008, RS 1989, Skilling 1975)

We now give up on the magnetostatic approximation and include finite electric
field effects. The diffusion approximation of the Fokker-Planck equation (60)
leads to

∂F

∂t
+RF − S( ~X, p, t)−


VX
VY
VZ
Vp

 ·


∂XF
∂Y F
∂zF

p−2∂pp
2F



=


∂X
∂Y
∂z

p−2∂pp
2

 ·

κXX κXY κXZ κXp
κY X κY Y κY Z κY p
κZX κZY κZZ κZp
κpX κpY κpZ κpp




∂XF
∂Y F
∂zF

p−2∂pp
2F

 (82)

We identify the individual pitch-angle averaged convection speeds
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VX =
κZX
L3

+
γ + 1

γv2
U
∂U

∂z
κZX , VY =

κZY
L3

+
γ + 1

γv2
U
∂U

∂z
κZY ,

VZ = −U+
κZZ
L3

+
γ + 1

2γv2
U
∂U

∂z
κzz, Vp =

1

3

∂U

∂z
p+

κZp
L3

+
γ + 1

γv2
U
∂U

∂z
κZp (83)

and list some of the 16 pitch-angle averaged diffusion coefficients

κZZ =
v2

8

∫ 1

−1
dµ

(1− µ2)2

Dµµ
, κZp =

v

4

∫ 1

−1
dµ

(1− µ2)Dµp

Dµµ
,

κpp =
1

2

∫ 1

−1
dµ

[
Dpp −

DµpDpµ

Dµµ

]
−p

4

∂U

∂z

[
U

v

∫ 1

−1
dµ

(1− µ2)Dµp

Dµµ
+

2

3

∫ 1

−1
dµ

(1− µ3)Dµp

Dµµ

]
,

κXX =
1

2

∫ 1

−1
dµ

[
DXX −

DXµDµX

Dµµ

]
+
εavRL
12L2

[∫ 1

−1
dµ
µ(1− µ2)DXµ

Dµµ
−
∫ 1

−1
dµ

(1− µ3)DµX

Dµµ

]
−
v2R2

L

72L2
2

[∫ 1

−1
dµ
µ(1− µ2)(1− µ3)

Dµµ

+
U

v

∫ 1

−1
dµ
µ(1− µ2)2

Dµµ
+

2

3

∫ 1

−1
dµ
µ(1− µ2)(1− µ3)

Dµµ

]
(84)
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In its general form the diffusion–convection transport equation (82) contains
spatial diffusion and spatial convection terms as well as momentum diffusion
and momentum convection terms. Since the pioneering work of Fermi (1949,
1954) it has become customary to refer to the latter two as Fermi acceleration
of second and first order, respectively.

With its 16 different diffusion coefficients and 4 convection speeds the gen-
eral diffusion-convection transport eequation (82) is rather complicated and
involved. One has to emphasize that, depending on the type of turbulent elec-
tromagnetic fields considered, not all of these 20 CR transport parameters have
nonzero values, and some of the transport parameters have much higher values
than others, so that simplified versions of the general transport equation (82)
are justified.

The first term in the momentum convection term Vp leads to acceleration for
converging bulk flow (i.e., dU/dz < 0) but to deceleration for expanding flows
(i.e., dU/dz > 0).

The second term in the momentum convection term Vp leads to focused ac-
celeration of CR particles (RS and Shalchi 2008, Litvinenko 2011) provided the
product of κZpL3 < 0 is negative.
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6. Focused acceleration

For L1 = L2 = ∞ and κXX = κY Y = κXY = 0 the modified diffusion-
convection equation (82) in a medium at rest reduces to the focused diffusion-
convection transport equation (L3 = L)

∂F

∂t
+
F

Tc
− S( ~X, p, t) +

∂

∂z

(κzz
L
F
)
− 1

p2

∂

∂p

([
p2ṗloss +

azpp
2

L

]
F

)

=


∂X
∂Y
∂z

p−2∂pp
2

 ·


0 0 0 0
0 0 0 0
0 0 κzz azp
0 0 −azp A



∂XF
∂Y F
∂zF
∂pF

 (85)

with

azp = κZp =
v

4

∫ 1

−1
dµ

(1− µ2)Dµp(µ)

Dµµ(µ)
=
VAH

3
p, (86)

for isospectral undamped slab Alfven wave turbulence, where H = (I+ −
I−)/(I+ + I−) denotes the net cross helicity of Alfven waves.

6.1. New transport terms due to weak adiabatic focusing

Weak adiabatic focusing gives rise to two terms in Eq. (85) that represent
convective transport terms parallel to the guide field and in momentum space,
respectively.
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The convective term along the guide field has been derived before by Earl
(1976) and Kunstmann (1979); the momentum convection term by RS and
Shalchi (2008).

• For weak focusing (|L| � λ) the new parallel convective speed κzz/L =
vλ‖/3L is much less than the individual cosmic ray speed v.

• Particularly interesting is the new convection term in momentum space

1

p2

∂

∂p

[
azpLp

2

L2
F

]
=

1

p2

∂

∂p

[
VAH

3L
p3F

]
For positive values of the product azpL ∝ HL > 0 it represents a continu-
ous momentum loss term, whereas for negative values azpL ∝ HL < 0 it
represents a first-order Fermi-type acceleration term. The focusing length
L(z) = −(B0/(∂B0/∂z)) is positive for a diverging guide magnetic field
and negative for a converging guide field.

• This novel distributed focused acceleration process, which is a 1st order
Fermi acceleration process, operates in all cosmic sources with HL < 0,
including the upstream medium of shock waves, haloes of spiral galaxies
and solar flare loops. If it is the dominant transport term it generates the
power-law distribution function F ∝ p−3 in steady-state conditions.

• For HL > 0 it represents a deceleration (momentum loss) process. It
could prevent (or reduce) diffusive shock acceleration.
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Figure 3: Conditions for 1st-order distributed Fermi acceleration in diverging (a) and con-
verging (b) guide magnetic fields. In diverging magnetic fields a net negative
(h = −H < 0) cross helicity state of Alfven waves (pronged curve) convects the
average particle to regions of stronger field strength. In converging magnetic fields
a net positive (H > 0) cross helicity state of Alfven waves also convects the average
particle to regions of stronger field stength. In both cases the conservation of the
pitch-angle averaged magnetic moment of the particle requires the increase of the
particle momentum.
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7. Momentum spectra

In the Parker equation (81) with L3 =∞ we combine

U
∂F

∂z
− 1

3

∂U

∂z
p
∂F

∂p
=

∂

∂z
(UF )− 1

p2

∂

∂p

[
p2

(
1

3

∂U

∂z
p

)
F

]
(87)

Allowing for momentum diffusion, momentum losses and a mono-momentum
source term then provides in the steady-state case

∂

∂z

[
κ‖
∂F

∂z
− UF

]
− F
Tc

+
1

p2

∂

∂p

[
p2κpp

∂F

∂p
+ p2 (ṗgain − ṗloss)F

]
= −S0(z)δ(p−p0)

(88)
with the 1st-order Fermi acceleration term ṗgain = a1p from negative ∂U

∂z =
−3a1 and/or focused acceleration.
For κ‖ = κ0 independent of p we can expand the solutions in terms of the
spatial eigenfunctions (plus finite spatial boundary conditions)

F (z, p) =
∞∑
n=0

gn(p)Zn(z), S0(z) =
∞∑
n=0

anZn(z) (89)

where

∂

∂z

[
κ0
∂Zn
∂z
− UZn

]
+ λnZn(z) = 0. (90)
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Each of the momentum dependent expansion coefficients obeys the leaky-box
equation

1

p2

d

dp

[
p2κpp

dgn
∂p

+ p2 (ṗgain − ṗloss) gn

]
−(λn+T−1

c )gn = −anδ(p−p0) (91)

7.1. Only 1st-order Fermi acceleration

For ṗloss = 0, κpp = 0, 1st-order Fermi acceleration generates the power-law
solution for p ≥ p0

gn(p) ∝ p−sn , sn = 3 +
λn + T−1

c

a1
, (92)

where sn → 3 for efficient acceleration a1 →∞. Note that the smallest eigen-
value λ0 dominates the momentum dependence of F (z, p) at large momenta
p� p0.

7.2. Only 2nd-order Fermi acceleration

For ṗloss = 0, a1 = 0, and κpp = κ1p
2−η and λn + T−1

c = λ0p
b, we obtain the

Bessel function solution (Pikelner and Tsytovich 1976, Barbosa 1979)

gn(p ≥ p0) ∝ p
η−3

2 K| 3−η
b+η
|

(
2

|b+ η|

√
λ0

κ1
p
b+η

2

)
, (93)
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which is a power law ∝ pη−3 at small arguments with an exponential cut-off.

For more general solutions of Eq. (91) see RS (1984, 2002).

7.3. Negligible spatial convection

If at large enough CR momenta UF � κ2p
η ∂F
∂z , Eq. (88) reduces to

κ2
∂2F

∂z2
− F

Tcpη
+

1

p2+η

∂

∂p

[
p2κpp

∂F

∂p
+ p2 (ṗgain − ṗloss)F

]
= −S0(z)δ(p− p0)

pη0
,

(94)
which again can be expanded as in Eq. (89)

F (z, p) =

∞∑
n=0

Gn(p)Un(z), S0(z) =

∞∑
n=0

wnUn(z) (95)

with

κ2
∂2Un(z)

∂z2
+ λnUn(z) = 0. (96)

In this case the leaky-box equations read

1

p2

d

dp

[
p2κpp

dGn
∂p

+ p2 (ṗgain − ṗloss)Gn

]
− (λnp

η +T−1
c )Gn = −wnδ(p− p0)

(97)
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8. Summary and conclusions

• We have reviewed the fundamentals of cosmic ray astrophysics stressing
the importance of electromagnetic acceleration and transport processes
with B0 � δB � δE.

• The ordering B0 � δB � δE, necessary for explaining the observed
nearly isotropic CR momentum distribution function, is the basis for
a perturbation scheme leading to the modified diffusion-convection CR
transport equation that describes all electromagnetic acceleration and
transport processes discussed today.

• The actual determination of the Fokker-Planck coefficients requires the
knowledge of the second-order electromagnetic correlation functions, ei-
ther from observations in the interplanetary medium or from fluctuation
theory.

• The theory of CR acceleration and transport is an active field of research
with many contributions still to be made until a full understanding of the
origin of cosmic rays is achieved. It is a pity that these days far too little
young scientists work on analytical kinetic theory.
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