TAIGA Experiment: From Cosmic Ray to Gamma-Ray Astronomy in the Tunka Valley

Yuliya Kazarina (for the

collaboration)

International School of Cosmic Ray Astrophysics <<Maurice M. Shapiro>> 21st Course: Astroparticle Physics: Yesterday, Today, and Tomorrow 1-7 August, 2018

2

TAIGA - complex instrument for studying astrophysical processes by means of detecting various components of air-showers in the very-high energy range.

Goals:

- * search for galactic sources of gamma rays with energies higher than 30 TeV;
- * gamma-radiation fluxes from the Crab nebula and Tycho SNR;
- * gamma rays from the most bright blazars;
- * search for possible axion-photon transitions (candidates to DM particle);
- * flux of ultra-high energy primary cosmic rays.
- ~ 80 scientists from 15 institutes (EU + Russia)

TAIGA:

Cosmic ray detectors (<EeV)

* Tunka-133 air-Cerenkov
* Tunka Radio Extension (Tunka-Rex)
* Tunka-Grande scintillators

Gamma ray detectors (>TeV)

- * TAIGA-HiSCORE
- * TAIGA-IACT
- * TAIGA-muon

approx. 50 km from Lake Baikal in the Tunka valley

Cosmic ray studies up to several EeV

Science objectives

All-particle energy spectrum and mass composition in galaxy \rightarrow extra-galaxy region

Tunka-133

Detector

- * 3 km² Cherenkov array
- * 25 clusters, 7 wide-angle optical detectors in each cluster
- * Flash ADC: 200 MHz, 12 bit
- * PMTs: EMI 9350 Ø 20 cm
- * Short time of operation (moonless, cloudless nights)

Reconstruction resolution:

- * arrival direction ~ 0.1-0.3°
- * axis position ~ 5-10 m
- * E_{pr} ~ 10%
- * X_{max} ~ 25 g/cm²

Reconstruction concept

$$E = A \cdot [N_{ph}(200m)]^{g}$$

g = 0.94±0.01
FWHM ~ $\Delta X g/cm^{2}$,
 $\Delta X = X_{0}/cos\theta - X_{max}$

$$X_{max} = C - D^* lg \tau$$
 (400)

$$K_{max} = F(P),$$

P - LDF slope

Comparison of energy spectra obtained at Tunka-133 with some other experiments

 * < 10¹⁷ eV: consistent with KASCADE-Grande and Ice-TOP
 * >10¹⁷ eV: consistent with fluorescent light experiments: Auger and TA

Primary mass composition becomes heavier in the energy range 10^{16} -3 \cdot 10^{16} eV and lighter again in the range 10^{17} - 10^{18} eV.

6

Detector

- * 63 antenna stations on 1 km² (200 / 20 m spacing between / inside clusters)
- * Antenna type SALLA (Loop antenna with isotropic pattern)
- * frequency band 30-80 MHz
- * triggered by Tunka-133 and Tunka-Grande
- * Threshold ~ 100 PeV

Reconstruction concept

- * blind cross-check Tunka133/Tunka-Rex
- * experimental proof of X_{max} sensitivity

Energy

resolution: 15%

resolution: 38 g/cm²

Shower maximum

- * Tunka-Rex calibrated by same reference source as LOPES
- * Energy scales compared via CoREAS simulations using Tunka-133 and KASCADE-Grande energies as input

9

 Independent check via LOPES and Tunka-Rex has shown that energy scales of KASKADE-Grande and Tunka-133 are consistent within 10%

* Tunka-Rex results are in agreement with other experiments.

* The good agreement between the three techniques shows the progress in the understanding of air-shower phenomena and systematics of experiments exploiting these techniques.

doi:10.1103/PhysRevD.97.122004

Detector:

- * 19 scintillator stations with spacing 200 m on 1km^2
- * Each station consists of electron (8 m^2) and muon (5 m^2) detectors
- * Independent trigger for station, synchronization via opric fibers
- * Almost fully duty-cycle
- \rightarrow Mass composition from N_e/N_m

From simulation for energies > 100 PeV:

- * $N_e \sim 10\%$ precision, N_m 25%
- * arrival direction ~ 1.4°
- * core position 17 m

* E_{pr} - 20%

Ground-Based Gamma-Ray Astronomy from a Few TeV to Several PeV

TAIGA-HiSCORE

Detector:

- * High Sensitive Cosmic ORigin Explorer
- * Non-imaging Cerenkov array like Tunka-133, but the threshold is 20 times lower
- * will consist of 500 optical detectors with spacing 106 m on the area 5km² (now 43 detectors on area 0.5 km²)
- * Large FOV ~ 0.6 sr, angular resolution ~ 0.1 $^{\circ}$
- * Good sensitivity to the EAS parameters

Reconstruction resolution:

- * arrival direction ~ 0.1 $^\circ$
- * axis position ~ 5-6 m
- * E_{pr} ~ 10-15%
- * $X_{max} \sim 20-25 \text{ g/cm}^2$

First TAIGA-HiSCORE spectrum (data from Feb to Apr of 2017)

* Events with high multiplicity (mostly CR) are reconstructed with standard (similar to Tunka-133) method

* Events with low multiplicity (CR+ γ) are reconstructed with simplified method (core = center of gravity, etc.)

* TAIGA-HiSCORE provides information on the detailed shape of the spectrum at and before the knee

* HiSCORE is not able to make γ/h separation on event level

TAIGA-IACT

- * Imaging air-Cherenkov telescopes
- * will comprise 16 telescopes with spacing of 600-1000 m.
- * Gamma/hadron separation
- * Optical system: Davis-Cotton design reflector and photomultiplier-based camera
- * First IACT in monoscopic mode is not able to resolve shower axis

Camera:

- * 547 hexagonal-shaped pixels
- * PMT XP1911: window of DIA 15 mm
- * Winston cone: 30 mm input size,15 mm output
- * FOV 9.72x9.72°, angular size 0.36° per pixel

Mirror:

- * Davies-Cotton optic type
- * Focal length: 4.750 m
- * 34 spherical mirror segments
- * Diameter of each segment: 60 cm
- * Diameter of the mirror: 4.3 m
- * The area: $\sim 10 \text{ m}^2$

TAIGA - HiSCORE: core position, direction, energy reconstruction.

Gamma/ hadron separation

TAIGA-IACT: image form, monoscopic operation

TAIGA-Muon: electron/muon ratio

Combined approach of the imaging and timing techniques: inter telescope-distance can be significantly increased!

- * Joint events with low energy are selected from source direction
- * Axis, core and energy is taken from HiSCORE
- * Quality cuts base on CORSIKA simulations are applied to IACT reconstruction
- * First observation period was about 20 h long (Crab + Mrk-421)
- * About 15k joint events were recorded
- * 3 gamma candidates survived during this period after quality cuts

First gamma candidates

TAIGA-HiSCORE and TAIGA-IACT point source sensitivity

- * Point-source survey sensitivity for TAIGA at 300 h of exposure.
- * TAIGA covers the continuation of the spectra of known Galactic sources, some of which might be the so far undiscovered Galactic cosmic ray PeVatrons.

* Tunka facility (TAIGA) is modern instrument with long history focused on cosmic rays and gamma astronomy

* Energy spectrum and mass composition of cosmic rays are measured in range of $10^{14,5}$ - $10^{18,5}$ eV

* TAIGA is equipped with leading radio detector (Tunka-Rex) which develops and tests new methods for next-generation sparse radio arrays

* TAIGA gamma instruments will be able to study UHE gamma sky

* Location of TAIGA allows one to study gamma sources almost non-available for other instruments (e.g. Tycho SNR)

* Next year will be equipped with 3 IACTs with a final goal of 16 IACTs