International School of Cosmic Ray Astrophysics <<Maurice M. Shapiro>> **21st Course: Astroparticle Physics:** Yesterday, Today, and Tomorrow

AND TO ENRICO FERMI, THE "ITALIAN NAVIGATOR". FATHER OF THE WEAK FORCES

AND GALILEO GALILEI, FOUNDERS OF MODERN SCIENCE

Kathrin Egberts Potsdam University

ounded in Eric

Cosmic-Ray Electrons + Positrons

Cosmic-Ray Electrons + Positrons

Kathrin Egberts . The High-Energy End of the Cosmic-Ray e⁻ + e⁺ Spectrum. Erice 2018 3

Cosmic-Ray Electrons + Positrons

Kathrin Egberts . The High-Energy End of the Cosmic-Ray e⁻ + e⁺ Spectrum. Erice 2018 4

"Anomalous" Positron Fraction?

- Positrons assumed to be produced only as secondaries:
 - $CR + ISM \rightarrow \pi \rightarrow \mu^{\pm} \rightarrow e^{\pm}$
- Expectation of a falling positron fraction with energy (to follow B/C ratio)
- Rise suggests a primary component: Dark matter?

AMS press release Dec 2016

Or Rather Astrophysical Phenomena?

Radioactive decays in SNRs

 $T_{1/2, Ni} = 6.1 \text{ days}, T_{1/2, Co} = 77 \text{ days}$ $T_{1/2, NiTi} = 63 \text{ years}$

Pulsars

Cosmic-Ray Electrons at TeV energies

- Severe energy losses of TeV electrons by inverse Compton and synchrotron radiation (small masses!)
- Energy loss prop to E² (in Thomson limit): dE/dt = -b E²
- \rightarrow the maximum energy an electron can have after time t is $E_{max} = 1/bt$

Fig. 1.— Energy loss coefficient of cosmic-ray electrons in the Galaxy with energy. The magnetic field is assumed to be $B_{\perp}=5\mu G.$

Kobayashi et al., ApJ 601 340-351 (2004)

• Cooling time:
$$t_{cool} = E/\dot{E} \sim 1/E$$
 $t \sim 5 \times 10^5 \left(\frac{\text{TeV}}{E_{e^{\pm}}}\right) \text{ yr}$

TeV e[±] must have been injected not much longer than ~10⁵ yr ago

- Propagation distance:
 - ~ $\sqrt{D T_{cool}}$ ~ 100-500 pc for TeV e[±] (assuming reasonable diffusion coefficient D)

Only limited number of nearby accelerators can contribute to the overall spectrum!

Considering nearby and recent SNRs:

Potsdam

Kathrin Egberts . The High-Energy End of the Cosmic-Ray e⁻ + e⁺ Spectrum. Erice 2018 8

Only limited number of nearby accelerators can contribute to the overall spectrum!

Considering nearby and recent SNRs: + Pulsars/Pulsar Wind Nebulae!

Potsdam

Kathrin Egberts . The High-Energy End of the Cosmic-Ray e⁻ + e⁺ Spectrum. Erice 2018 9

Is that all?

- All sources considered? selection biases
- Uncertainties in distance estimates
- Surveys using el.-mag. radiation: bias due to different propagation of photons and CRs
- Difficult to determine the complete real distribution of sources

Grasso et al., Astropart. Phys. 32, 2 (2009)

 \rightarrow Stochastic source distribution

Cosmic-Ray Electrons at TeV energies: Conclusions

- Low predictive power of what is happening at TeV energies
- Sources are discrete, potential to see direct imprint of local accelerators on the electron spectrum
- Shape of the spectrum very sensitive to exact distribution of sources in our Galactic neighbourhood and their properties

Cosmic-Ray Electron Measurements at TeV Energies

Measurements need

- High statistics: large effective areas and field of view and long observation times
 exposure = A_{eff} × FoV × T_{obs}
- Deep calorimeters for TeV energy reconstruction
- Excellent electron-hadron separation capabilities

A New Generation of Space-Born Experiments

CALorimetric Electron Telescope (CALET)

DArk Matter Particle Explorer (DAMPE)

- Deep calorimeters: 30 X₀ / 32 X₀ (*cf.* AMS-02 17 X₀, Fermi-LAT 8.6 X₀)
- Proton contamination ≈5% at 1 TeV
- Energy resolution ~few %

A New Generation of Space-Born Experiments

CALorimetric Electron Telescope (CALET)

DArk Matter Particle Explorer (DAMPE)

- Below 50 GeV agreement between Fermi, AMS, DAMPE, CALET
- At ~50 GeV diverging hardening, which splits the data into two groups: AMS&CALET, Fermi&DAMPE
- AMS&DAMPE observe a dip in the spectrum between 300 GeV to 1 TeV
- Beyond 1 TeV agreement between DAMPE and CALET (poor statistics)
 Kathrin Egberts . The High-Energy End of the Cosmic-Ray e⁻ + e⁺ Spectrum. Erice 2018 14

A New Generation of Space-Born Experiments

CALorimetric Electron Telescope (CALET)

DArk Matter Particle Explorer (DAMPE)

CALET Coll, PRL 2018

Is there a break in the spectrum? - Fitting a smoothly broken power-law:

■ $\Gamma = 3.15 \pm 0.02 \rightarrow 3.81 \pm 0.32$, if fixing E_b = 914 GeV ■ $\Gamma = 3.09 \pm 0.01 \rightarrow 3.92 \pm 0.20$, E_b = 914 ± 98 GeV

 χ²/ndof = 17/25, pure power-law: χ²/ndof = 26.5/26

 χ²/ndof = 23.3/18, pure power-law: χ²/ndof = 70.2/20

Ground-Based Measurements

- Imaging atmospheric Cherenkov telescopes (IACTs) designed for TeV gamma-ray measurements
- Gamma-rays and electrons both produce el.mag. air showers
- But: gamma-rays are (mostly) localised sources, which allows for simple background subtraction!
 need to find alternative mechanisms

High Energy Stereoscopic System (H.E.S.S.)

	IACTs	Satellite
A_{eff}	10 ⁵ m ²	l m ²
Ω	10 deg ²	10 ⁴ deg ²
T _{obs}	10 ³ h/year	10⁴ h/year

Electron Measurement from 2008/2009

- Livetime: 239 h (77 h for the low-energy analysis)
- Hadronic background determined by fitting the data in a discriminator distribution with MC electrons and protons (discriminator: Random Forest output, analysis tailored for this use case)

Drawback:

- Proton simulations much less accurate than electron (electromagnetic) ones
- Introduces dependence on hadronic models used (SIBYLL, with QGSJET cross check)

10⁶

10³

Aharonian et al., PRL **101**, 261104 (2008)

Electron Measurement from 2008/2009

- Measurement dominated by systematic uncertainties due to
 - hadronic interaction model
 - atmospheric uncertainties
- Beyond 6 TeV systematics no longer under control

How to Improve: Data Set and Analysis Technique

- Increased data set by factor of 5: 239 h →1186 hours
- Improvements in the analysis methods yield a very powerful hadron rejection:
 - Log-likelihood comparison between recorded images and pre-calculated templates
 - Discrimination based on goodness of fit
 - \rightarrow standard H.E.S.S. analysis

M. de Naurois & L. Rolland, Astropart. Phys., 32 (2009), 231-252

The New H.E.S.S. Cosmic-Ray Electron Spectrum

Broken power-law spectrum without any apparent structure up to 20 TeV

 Consistent with previous H.E.S.S. measurements, confirmation of the sharp break at around 1 TeV

Background Contamination

- Cosmic-ray hadrons:
 - A hard cut on the goodness eliminates most of the background
 - Using MC simulations, the residual background can be estimated to be $\approx 15\%$

	Prelim	linar
Energy	Expected contamination from protons	ary
1 TeV	\sim 15%	
2 TeV	\sim 7%	
> 5 TeV	< 10%	

- Gamma-rays:
 - Air showers very similar to CR electron ones, discrimination challenging
 - Exclusion of gamma-ray sources and Galactic plane reduces contamination significantly

 remaining: high-latitude Galactic diffuse and
 extragalactic gamma-ray background (EGB)

 \rightarrow EGB is 0.1% of the electron flux at 1 TeV

Background Contamination

- Cosmic-ray hadrons:
 - A hard cut on the goodness eliminates most of the backgrou
 - Using MC simulations, the residual background can be estin

	relimi	
Energy	Expected contamination from protons	
1 TeV	\sim 15%	
2 TeV	\sim 7%	
> 5 TeV	< 10%	

Injection of **MC protons** with simulated spectral index of -2.8 reconstructed using **electrons** acceptance.

- Gamma-rays:
 - Air showers very similar to CR electron ones, discrimination challenging
 - Exclusion of gamma-ray sources and Galactic plane reduces contamination significantly

 remaining: high-latitude Galactic diffuse and
 extragalactic gamma-ray background (EGB)
 - \rightarrow EGB is 0.1% of the electron flux at 1 TeV

Investigation of Systematics

- Drastically reduced due to avoidance of hadronic models
- Stability thoroughly checked, studies included:
 - Test on event selection cuts
 - Dependency on zenith angle
 - Dependency on atmos. conditions
 - Dependency over the years
- Always present: energy scale uncertainty of ΔE/E~15%
- → Mostly normalisation uncertainty

Fitting a smoothly broken power-law:

$$\begin{array}{rcl} \Gamma_1 &=& 3.04 \ \pm \ 0.01 \ ({\rm stat}) \ \ ^{+0.10}_{-0.18} \ ({\rm sys}) \\ \Gamma_2 &=& 3.78 \ \pm \ 0.02 \ ({\rm stat}) \ \ ^{+0.17}_{-0.06} \ ({\rm sys}) \\ E_b &=& 0.94 \ \pm \ 0.02 \ ({\rm stat}) \ \ ^{+0.29}_{-0.26} \ ({\rm sys}) \ {\rm TeV} \\ N_0 &=& 104 \ \pm \ 1 \ ({\rm stat}) \ \ ^{+27}_{-16} \ \ ({\rm sys}) \ {\rm GeV}^2 \cdot {\rm m}^{-2} \cdot {\rm sr}^{-1} \cdot {\rm s}^{-1} \\ \alpha &=& 0.12 \ \pm \ 0.01 \ ({\rm stat}) \ \ ^{+0.19}_{-0.05} \ ({\rm sys}) \end{array}$$

$$E^{3} \frac{\mathrm{d}N}{\mathrm{d}E} = N_{0} \left(\frac{E}{(1 \mathrm{TeV})}\right)^{3-\Gamma_{1}} \left(1 + \left(\frac{E}{E_{b}}\right)^{\frac{1}{\alpha}}\right)^{-(\Gamma_{1}-\Gamma_{2})\alpha}$$

Investigation of Systematics

- Drastically reduced due to avoidance of hadronic models
- Stability thoroughly checked, studies included:
 - Test on event selection cuts
 - Dependency on zenith angle
 - Dependency on atmos. conditions
 - Dependency over the years
- Always present: energy scale uncertainty of ΔE/E~15%
- → Mostly normalisation uncertainty
- Consistent with both, AMS&CALET, Fermi&DAMPE

Fitting a smoothly broken power-law:

$$\begin{array}{rcl} \Gamma_1 &=& 3.04 \ \pm \ 0.01 \ (\text{stat}) \ \ ^{+0.10}_{-0.18} \ (\text{sys}) \\ \Gamma_2 &=& 3.78 \ \pm \ 0.02 \ (\text{stat}) \ \ ^{+0.17}_{-0.06} \ (\text{sys}) \\ E_b &=& 0.94 \ \pm \ 0.02 \ (\text{stat}) \ \ ^{+0.29}_{-0.26} \ (\text{sys}) \ \text{TeV} \\ N_0 &=& 104 \ \pm \ 1 \ (\text{stat}) \ \ ^{+27}_{-16} \ \ (\text{sys}) \ \text{GeV}^2 \cdot \text{m}^{-2} \cdot \text{sr}^{-1} \cdot \text{s}^{-1} \\ \alpha &=& 0.12 \ \pm \ 0.01 \ (\text{stat}) \ \ ^{+0.19}_{-0.05} \ (\text{sys}) \end{array}$$

$$E^{3} \frac{\mathrm{d}N}{\mathrm{d}E} = N_{0} \left(\frac{E}{(1 \mathrm{TeV})} \right)^{3-\Gamma_{1}} \left(1 + \left(\frac{E}{E_{b}} \right)^{\frac{1}{\alpha}} \right)^{-(\Gamma_{1}-\Gamma_{2})\alpha}$$

What is there to learn from the high-energy CR e?

High-energy spectrum of CR e[±] is featureless power-law with a break at ~1 TeV

- There are no features of local accelerators in the spectrum
 - Very existence of TeV electrons points to an accelerator within ~1 kpc
 - Spectrum constrains local source models
- No features of dark matter
 - Energy resolution ~15%
- Nature of the break at 1 TeV?
 - cutoff of the accelerator?
 - propagation effect?

 Do we see the "end of the cosmic-ray electron spectrum"? (and what about the secondaries?)

Summary

- Although CR e[±] are only a small fraction of CRs, they provide complementary information, probing our local neighbourhood
- Measurements are challenging because of low fluxes and large background
- New space-born instruments start to probe the energy regime beyond 1 TeV, while ground-based measurements now extend to 20 TeV
- Approaching the end of the CR e[±] spectrum still awaiting full scientific exploitation

