
HASP Student Payload Application for 2018

Payload Title: Robotic Arm Manipulation and Materials Matching: RA(M3) or RAM

Institution:Durham Tech, North Carolina Central University, and North Carolina State University

Payload Class (LARGE): Submit Date: 12/15/2017

Project Abstract: The need for satellite maintenance is growing as established satellites run out of fuel
and degrade in the harsh environments of space. NASA’s Satellite Servicing Projects Division (SSPD)
is developing unmanned craft to provide a lower-cost, lower-risk method of extending legacy satellites’
lifetimes. While only two active satellites are designed for maintenance, the next generation, including
the James Webb Space Telescope, plan to leverage robotic refueling and maintenance. Our
experiment for HASP tests the limits of relatively low-powered, semi-autonomous robotic dexterity,
running repeated iterations of tests that require precision actuation, computer vision, and force-torque
sensors. A robotic arm will perform simple tasks such as toggling switches, twisting objects, and
opening/closing velcro flaps as one might while refueling a satellite on-orbit. Our experiment evaluates
the impacts of extended use in extreme conditions. Orbital missions must contend with traditional
lubricants evaporating in low-pressure environments, survive direct and uninterrupted sunlight, and
control heating/cooling in the absence of convecting atmosphere. Over the duration of the flight we will
measure any degradation in performance, response time, and accuracy. We will also test the efficacy
of computer-vision, both for autonomy as well as for closed-loop feedback during operation.

Team Name: The Unacceptable Risks Team or Project Website:
http://www.theunacceptablerisks.com

Student Leader Contact Information: Faculty Advisor Contact Information:

Name: James Acevedo Julie Hoover

Department: Physics Science and Engineering

Mailing Address: 200 W. Poplar Ave # 1637 Lawson St

City, State, Zip: Carrboro, NC 27510 Durham, NC 27703

e-mail: jaceved1@eagles.nccu.edu hooverj@durhamtech.edu

Office
Telephone:

 919-536-7223 x 8021

Mobile
Telephone:

 240-350-1084 919-244-5968

mailto:jaceved1@eagles.nccu.edu
mailto:hooverj@durhamtech.edu

Contents

Payload Description

Overview

Methods

Science Goals

Concept of Operations

Kinematics & Electrical Design

Operation

Success Criteria

Thermal Control Plan

Team Management and Structure

The Team: Narrative Description

Financial Support

The Team: Role/Title/Email/Address Table

Organizational Chart

Timeline and Milestones

Payload Interface Specifications

Weight budget with uncertainties

Mounting plate footprint

Payload height

Power Budget: Introduction

Power Budget: Design

Power Budget: Planned Testing

Downlink serial telemetry rate & uplink serial command rate

Command List

Anticipated use of analog downlink channels or additional discrete commands

Desired payload location and orientation

Potential hazards

Integration & Flight Procedures

Additional Resources Requested

Preliminary Drawings

Construction narrative

Dimensioned Drawings

Power Circuit Diagram

Network Block Diagram

Wiring Diagram (***Please see this folder for full-resolution images of all diagrams***)

Anticipated modifications to payload mounting plate

Sketches of mounting structure

Preferred payload orientation and location on HASP

Payload Description
Overview

There are over 1,000 active satellites in orbit around the Earth; that number grows yearly with
no signs of slowing. Maintenance of these satellites is a long-term imperative, though only two
satellites (Hubble and ISS) are currently designed to be maintainable. NASA is developing articulated
robotic arms that can be sent to extend the lifespans of orbiting satellites. A prototype arm was
unveiled at Goddard Space Flight Center in 2015. Meanwhile, a privately-owned British company
announced in June of this year that they are developing a “space drone” with a non-invasive docking
apparatus that will allow it to dock with a variety of satellites to refuel them, provide maintenance, or
even adjust the satellite’s position. Our project, Robotic Arm Manipulation and Materials Matching:
RA(M3) or RAM, will contribute to the development of low-cost robotic actuation in a space
environment, most immediately satellite servicing. RAM will also provide the opportunity to research
the utility of robotic actuation driven by computer vision in a near-space environment.

Methods

To simulate the a satellite servicing mission, we designed a ‘Busy Box’ — much like a child’s
toy — with a number of different tasks to perform, each requiring a unique set of kinematic
instructions. We have chosen simple mechanical actions like twisting, pushing, pulling, and dragging
in order to simulate the types of movement needed for simple satellite servicing missions. RAM will

be a large payload to be mounted on the HASP gondola with the frame enclosed by Lexan panels, and
will run a set of predetermined trials on various components of the Busy Box. We will measure
completion time with the hopes of answering the following questions:

1. Are there particular techniques, patterns, or orders of operations that are quicker/more efficient
than others?

2. Is there decay in performance of a low-cost robotic arm over a 12+ hour operation run under
full solar exposure in near-vacuum conditions?

3. Is computer vision a viable component for counteracting any systematic drift due to system
fatigue?

Science Goals

This experiment will provide a strong analysis of measured timing results for multiple patterns that
will be repeated at intervals during flight; this involves measuring:

- total current draw
- time to complete individual and aggregated tasks
- percent-of-drift through repeated arm motions

As a stretch goal, we may install Digital Multimeter chips on the supply lines for each servo to
measure changes in individual current draw over the course of the entire flight. We may also install
twin accelerometers — one fixed to the HASP baseplate as a calibrator and one on the arm — to
interpret the effects of any external vibrations, though we do not expect significant shocks during float.

Concept of Operations

The ground team will send serial commands to RAM to initiate in-flight trials. While in
transport and during ascent, the robotic arm of RAM will have a default storage position to ensure
maximum durability and safety of the components for non-operating periods. The ‘wrist’ of the arm
will rest in its ‘cradle.’ The geometry of the cradle will be finalized after testing, but should feature a
self-centering feature and a switch to confirm proper docking during balloon ascent and descent.

● When the HASP gondola reaches its estimated flight altitude, the team will signal over
the serial, from ground to HASP to RAM, to begin operations.

● At this time, RAM will begin a warm-up process that will consist of mostly
self-diagnostics.

○ When it reports back that all systems are nominal, we will use the serial link to
instruct RAM to begin a set of trials, sending recorded data to the ground.

● RAM will take all measurements automatically and will record video with
Arduino-compatible TTL Serial cameras as long as the payload is powered on. This
video will be used as a secondary method of corroborating trial data measured by the
RAM system.

● In parallel with robotic operation, the payload will host a suite of sensors taking
ambient temperature, pressure, and humidity readings as well as measuring
temperatures of each servo. These measurements and trial data will be downlinked
during flight and stored locally on RAM’s local storage as well. The information
recorded by our atmospheric sensors will further contextualize and inform our analysis
of the arm’s performance, particularly in the event of an issue.

The hull of RAM will have four cameras recording video, as well as a 5th arm-mounted camera.
In addition to being used for post-processing, these cameras will be able to take pictures that can be
downlinked during flight. The ability to receive live photographic feedback will help to inform the
ground team in the event that any errors occur and provide immediate feedback. Having periodic
imagery feedback gives a level of confidence to the ground team responsible for selecting which trials
the arm performs. Each set of trials will take from 30 to 60+ minutes.

Please note that in all renders we have omitted the cradle and the arm-mounted PixyCam; we need

more testing to determine their orientation, balance, and placement.

Kinematics & Electrical Design

RAM is designed to operate with almost no guidance from the ground team beyond “which
pre-set trial am I running?”. It is a robotic arm with six degrees of freedom (6DOF). A Raspberry Pi
B+ (RPi) combined with a RoboPi expansion board that will control the arm directly. These
components will drive the servos of the arm. The Raspberry Pi will make decisions based on input
from the PixyCam, a robotic vision camera and microcontroller platform. In order to properly guide
the arm based on camera input, we are implementing Robot Operating System (ROS) MoveIt!, the
most popular open-source software for robotic actuation. MoveIt! can be used for both Forward and
Inverse Kinematics, motion planning, control, and navigation. To use MoveIt! effectively, we will
configure the software using Denavit-Hartenberg parameters specific to our robotic arm.

The primary goal of the current electronic component design is to alleviate single points of
failure. It is entirely feasible that a lone RPi with the appropriate array of expansion boards could
manage the entire system. However, the danger here is if that one RPi fails then the whole system
could follow. In the current design, it is possible that the RoboPi expansion board can be controlled
over the I2C network (though our original setup doesn’t reflect this, it is possible). In this sense, our
design is a practice in high-level network design with the intention of cutting down on single points of
failure.

The secondary goal of the electronic design is to improve overall operational efficiency. By
dedicating single Arduinos to simple and basic tasks, we free up each component to focus wholly on
each objective. This also helps to simplify code implementation, which in turn increases robustness. A
single program running on an Arduino needs to only focus on its task and not juggle other jobs. The
code to manage multiple operations may create points of failure and slow down development time; the
more complicated code is, the more it needs to be quality assured. By using multiple micro controllers,
we are able to write more concise and efficient code keeps our system as robust as possible.

Operation

Each trial will consist of a series of actions to be performed by the arm. We can set the arm into
one of at least three different modes for each trial. These modes will govern the starting position of the
robotic arm as it performs each task in a trial. Each element in the Busy Box is attached to an actuator,
which provides indication of success; the Arduino controlling the Busy Box will record button presses,
switch toggles, etc. This feedback will dictate if the arm has completed the task and if it may proceed
to the next action. The modes come into play between each action in a trial:

● Mode 1 will require the arm to return to its self-diagnostic position (“home”) before starting its
next action.

● Mode 2 will require that the arm move to a position halfway between “home” and the end
position of its most recently completed action.

● Mode 3 will allow for the arm to move backward until it has acquired a lock on the actuator of
interest for the next action in its current trial.
These modes allow for a few interesting scenarios. First, the starting position is a fixed (X,Y,Z)

coordinate position: fixed values that will be sent to each servo. Since this position is not dependent on
computer vision and will be a static value, it allows us to track any drift that develops over time.
Modes 1 and 2 allow for two different ways to collect data on drifting. Mode 3 allows the system to
operate without caring about drift, as it only uses feedback from the camera (“closed loop”) and not
from any static servo positions.

The Busy Box is a panel of toggles, buttons, and switches that will test the dexterity and

functionality of our robotic arm. Electronic components like the switches and push-buttons will
communicate directly to the Arduino. Purely-mechanical components like the cube and spheroid and
the hook-and-loop flap will have limited feedback to the Arduino via magnetic proximity switches, but
are primarily monitored via camera. Four cameras mounted around the frame provide a live view of
the arm’s operation. We expect our arm to perform the following tasks:

- switches: toggle on/off
- buttons: press
- knob: turn in either direction to specific #s of degrees
- cube: grip, unstick from hook-and-loop, move, re-stick
- spheroid: grip, unstick from hook-and-loop, move, re-stick

- door flap: open and close velcro flap

Data from these trials will provide interesting perspectives on operational efficiency. We may

also see unexpected results; intuitively, it is assumed that the mode which stays as close as possible to
the Busy Box (i.e. that doesn’t return home after each task) would be the fastest. However, what if that
is not the case? Comparing methods in this way allows for the discovery of interesting and compelling
outcomes that could inform future experiments.

Success Criteria

MINIMUM SUCCESS CRITERIA [FLIGHT] (D-minus, “At least we tried.”)
❏ payload powers on
❏ arm moves (at all) without blowing fuse
❏ arm completes one test ‘blind’, i.e. without computer vision
❏ system writes logs to SD card
❏ at least one camera records images and video

“PARTICIPATION AWARD” SUCCESS CRITERIA [FLIGHT] (C-minus, “We’re adequate!”)

❏ payload sends & receives telemetry
❏ arm de-cradles from its storage mode at float
❏ arm successfully completes at least one ‘minimum’ trial, autonomously using computer vision:

❏ one button press recorded by Busy Box
❏ one toggle switch in each direction recorded by Busy Box
❏ one rocker switch toggle recorded
❏ 45° or more of rotation of potentiometer/rotary encoder

❏ cube removed from velcro
❏ sphere removed from velcro
❏ velcro opened

❏ payload records to SD:
❏ servo position data
❏ system logs

MODERATE SUCCESS CRITERIA (“B”, a good flight)

❏ payload sends & receives telemetry
❏ arm de-cradles from its storage mode at float
❏ arm re-cradles into storage mode before cutdown
❏ arm successfully completes n ‘standard’ trials autonomously, using computer vision (exact

criteria and number still to be determined, but for example:
❏ all buttons pressed within a certain time limit
❏ all switches manipulated within a certain time limit
❏ velcro opened and shut
❏ potentiometer/rotary-encoder fully rotated 320° in both directions
❏ cube removed and replaced three times
❏ sphere removed and replaced three times)

❏ arm attempts n ‘difficult’ trials autonomously, using computer vision (exact criteria and
number still TBD)

❏ payload records to SD:
❏ servo position data
❏ atmospheric data
❏ system logs
❏ video of flight

❏ payload sends usable still imagery to ground from arm and from 4 ‘overwatch’ cameras,
periodically and on-demand

EXCELSIOR! SUCCESS CRITERIA (“A+”, an excellent flight, everyone gets ice-cream sundaes)

❏ payload sends & receives telemetry
❏ arm de-cradles from its storage mode at float
❏ arm re-cradles into storage mode before cutdown
❏ arm successfully completes n ‘standard’ trials autonomously, using computer vision, without

missing a target, losing grip, etc., within a strict limit limit
❏ arm successfully completes n ‘difficult’ trials autonomously, using computer vision, without

missing a target, losing grip, etc.
❏ payload records to SD:

❏ servo position data

❏ atmospheric data
❏ system logs
❏ video of flight

❏ payload sends usable still imagery to ground from arm and from 4 ‘overwatch’ cameras,
periodically and on-demand

❏ payload transmits servo position to digital ground simulator
❏ payload transmits servo position to physical ground mimic arm (which echoes the motions of

the on-float arm)
❏ Dr. Guzik makes a noise of approval
❏ Extra credit: robot arm waves to HASP camera

Thermal Control Plan

We know from previous experience that the payload will have to withstand a wide range of
temperatures. The challenge is to keep the payload warm during ascent while preventing our
electronics from overheating in the lack of air and constant solar exposure at float:

● Mechanically, we have chosen materials proven to be resilient by past balloon projects.
● Electronically, the Raspberry Pi has a distinguished record of service in sub-orbital

operation, having flown on multiple short- and long-duration flights by NC Near Space,
University of Bridgeport, and CSBF. The family of Arduinos we are using has a similar
record. Our servos have been flown by Bridgeport.

● We will use four layers of mylar and tulle to insulate the electronics bay.
● We will heat sink our heat-emitting electronics (i.e. voltage regulators / DC-to-DC buck

converters) to the hull with blocks of aluminum, Kapton tape, and thermal paste. If our
other microcontrollers prove, during testing, to be major heat accumulators, we will
similarly heatsink them.

● We paint our electronics hull in white appliance enamel to protect our payload from
solar IR load, reducing our absorptance.

Durham Tech has upgraded to a larger vacuum chamber with a more substantial pump. We
have access to an incubator and an extreme temperature freezer that we can use for testing. We do not
have a single unit like the Bemco that we can use for combined thermal testing but we have managed
to rig the incubator so that we can sit the chamber inside of it. This works for endurance testing but it’s
not ideal. Like last year, we plan to visit industry partner Paul Mirel and borrow access to Goddard
Space Flight Center’s temperature-controlled vacuum chamber to simulate flight conditions roughly
matching the following anticipated values for what we call “mini-Integration.” This year, we have been
tentatively invited to use the T/V facilities at NASA’s Langley Research Center.

 Temp (°C) Pressure (Pa) Expected duration

Early Sept. AM launch - Ft. Sumner, NM 15 to 25°C 101,600 indefinite

Crossing tropopause -55°C 10,000 20 minutes

Float -30°C 500 to 2,000 10 to 16 hours

Crossing tropopause -55°C 10,000 20 minutes

Impact 20 to 30°C 100,000 instantaneous, we hope

Awaiting recovery 0° to 40°C 100,000 4 hours to 3 days

Team Management and Structure
The Team: Narrative Description

The team is sponsored by Julie Hoover, an instructor of geology and the Coordinator of

Engineering. She is also the mentor of the Durham Technical Community College Science and
Engineering Club, UNM NASA Swarmathon, and the NC Space Grant High Altitude Ballooning

Competition. Ms. Hoover organizes travel, oversees the budget, orders supplies, corrals rowdy
students, sets alarms, forces us to research and test, and keeps the ship from sinking. She has been the
PI on ten NASA grants at Durham Tech.

The majority of the students on the team participated in HASP 2017 and have been working
together on projects continuously since 2015. The team has a great rapport, knows each other's
strengths and weaknesses, and genuinely loves doing these projects together. We were the rowdy
group high fiving our way through our panic at Integration and hugging like lunatics at the launch.
We’re sure you remember how weird we are.

Jimmy Acevedo is returning as the student lead. He is a senior physics major at North Carolina
Central University. Jimmy interned at Goddard Space Flight Center during the summers of 2016 and
2017 on the Primordial Inflation Polarization ExploreR (PIPER) balloon project. He has more
scientific ballooning experience than most undergraduate students. He is also a NASA Community
College Aerospace Scholar, a NC Space Grant STEM Community College Scholar, a NASA Space
Public Outreach Team ambassador, and a Technician-class HAM radio operator.

We have three students from North Carolina State University. Dan Daugherty is a mechanical

engineering senior who will be managing our mechanical engineering tasks for the second year. Munir
Sultan and Kieran Valakuzhy were donated to us by IEEE and will return to support the electrical and
software team.

Javian Biswas is joining us from the American University in Washington, D.C. She has worked
on public relations and fundraising for HASP 2017. This year she will continue representing our team
in the aerospace lobbying circles of Washington.

The rest of the tUR team is from Durham Tech. Dan Koris is a sophomore at Durham Tech
who will be the software/electrical team lead again this year. He pitched RAM to us during the HASP
2017 launch; the project draws on experience he gained at his NASA Swarmathon Research
Fellowship this summer, where he researched state machines for multi-objective robots operating in
dynamic environments with Dr. Jason Isaacs at University of California at Channel Islands. Spencer
Boyd is formally joining the team, after consulting in 2017, as our draftsman, machinist, and treasurer
of tUR. Noah Olson interned with HASP GOAT in the summer of 2017 during our grueling testing
phase and missed most of the fun of the design and build stage. This year he will be supporting the
team by helping with documentation, assisting with wiring, and assembling the arm. Meredith Murray
and Laura Hagman are participating in their first year of HASP. Meredith is managing our fundraising,
photography, and social media. Laura is attempting to keep our prose crisp, our documentation
concise, and our technical explanations coherent.

We meet at least once a week for full team meetings at the Durham Scientific Ballooning
Facility (the geology lab) where we have a tidy workshop of tools and materials. We have an email
mailing list, group chat, and a massive Google Drive that we use to collaborate on work and stay
organized. Team leads work together every day and hold teleconferences during busy periods.

We anticipate sending Ms. Hoover, Jimmy Acevedo, Dan Koris, Dan Daugherty and two
students to Integration. We hope to send Ms. Hoover, Jimmy Acevedo, Dan Koris, and at least two
students for the flight in Fort Sumner, NM.

Financial Support

NC Space Grant has awarded tUR $5000 as part of the Team Initiative Grant. This grant is
designed to help student teams succeed at opportunities like HASP that are unfunded. The Durham
Tech Foundation has also pledged $5000. Our workshop, affectionately named the “Durham Scientific
Ballooning Facility” has been outfitted through the generosity of the National Science Foundation’s

(NSF) Centers of Research Excellence in Science and Technology (CREST) and various NC Space
Grant awards. The team maintains a GoFundMe page and this year we have the added incentive of Dan
Koris’ much-lauded man bun on the chopping block if we raise $2000. UPDATE: This was cut!

The Team: Role/Title/Email/Address Table

Name Team Role/Title Email Address

Julie Hoover Faculty Sponsor
Principal Investigator

hooverj@durhamtech.edu
919-536-7223 x8021

Collins Building
1637 Lawson St
Durham, NC 27703

Jimmy
Acevedo

Physics
Undergraduate

jaceved1@eagles.nccu.edu 200 W. Poplar Ave #6
Carrboro NC 27510

Daniel
Daugherty

Mechanical Engineering
Undergraduate

dadaugh2@ncsu.edu 3821 Knickerbocker Pkwy, Apt J
Raleigh NC 27612

Daniel R.
Koris

Computer Science
Undergraduate

korisd@gmail.com 830 Wilkerson Ave
Durham, NC 27701

Munir Sultan Computer Engineering
Undergraduate

masultan@ncsu.edu North Carolina State University
1019 Entrepreneur Drive
Raleigh, NC 27695

Kieran
Valakuzhy

Electrical Engineering
Undergraduate

ktvalaku@ncsu.edu North Carolina State University
Raleigh, NC 27695

Noah Olson Computer Science
Undergraduate

noah.v.olson@gmail.com 2208 Summit Drive
Hillsborough, NC 27278

mailto:hooverj@durhamtech.edu
mailto:jaceved1@eagles.nccu.edu
mailto:dadaugh2@ncsu.edu
mailto:korisd@gmail.com
mailto:masultan@ncsu.edu
mailto:ktvalaku@ncsu.edu
mailto:noah.v.olson@gmail.com

Meredith
Murray

Documentation
Undergraduate

murrraym5844@connect.durhamtech.
edu

221 Ivy Meadow Ln
Durham, NC 27707

Laura O’Brien
Hagman

Documentation
Undergraduate

binkyob@gmail.com 410 Shelly River Drive Apt 302
Raleigh, NC 27609

Spencer Boyd Machinist
Undergraduate

boyds8481@connect.durhamtech.edu 42 Talley Loop Road
Roxboro, NC 27574

Javian Biswas Fundraising and Public Relations
Undergraduate

javianbiswas@gmail.com 4400 Massachusetts Ave NW
Anderson 624
Washington, DC 20016-8101

Paul Mirel Industry Partner
Chief Engineer for the NASA
PIPER mission, a contractor
employed by Sigma Space
Corporation

paul.mirel@gmail.com Goddard Space Flight Center Building 21
RM 71
8800 Greenbelt Rd.
Greenbelt, MD 20771-2400 301-312-0213

Jobi Cook Industry Partner
NC Space Grant

jobi_cook@ncsu.edu Campus Box #7515
North Carolina State University
Raleigh, NC 27695-7515
919-515-5933

George
Hoover

Industry Partner
The InnovaNet Group
Senior Advisor, Mechanical
Engineering

hoover4740@gmail.com 510 Nina Dr
Graham, NC 27253
336-512-9831

Dr. Eric Saliim Industry Partner
NCCU Fab Lab

esaliim@nccu.edu 2101 Mary Townes Science Complex
1900 Concord St, Durham, NC 27707
919-530-6263

mailto:murrraym5844@connect.durhamtech.edu
mailto:murrraym5844@connect.durhamtech.edu
mailto:binkyob@gmail.com
mailto:boyds8481@connect.durhamtech.edu
mailto:javianbiswas@gmail.com
mailto:paul.mirel@gmail.com
mailto:jobi_cook@ncsu.edu
mailto:hoover4740@gmail.com
mailto:esaliim@nccu.edu

Organizational Chart

Timeline and Milestones

September 2017

27 All-Hands Meeting

October 2017

04 All-Hands Meeting

10 Engineering Team Meeting

11 All-Hands Meeting

18 All-Hands Meeting

25 Science Experiment Meeting

26 Leadership Meeting

November 2017

01 All-Hands Meeting

03 Leadership Google Hangout

03 Engineering Team Meeting

08 All-Hands Meeting

10 Q & A Teleconference

15 All-Hands Meeting

16 Engineering Meeting

17 Leadership/Engineering Meeting

19 All-Hands Meeting

27 Research Team Google Hangout

29 All-Hands Meeting/ Write-a-thon

30 Engineering Team Meeting

December 2017

01 Final Draft Due to Jimmy Acevedo

05 Engineering Team Meeting

06 All-Hands Meeting/ Order Supplies

07 Programming and Wiring

08 Leadership Meeting: Application Review /

Order Supplies

13 Turn in Application

15 Application Due

14-15 Tour of Langley, Goddard, & UMD

18-31 Preliminary Build Days**

January 2018

01-07 Preliminary Build Days**

08 Classes Begin

~15 Announce student payload selection

17 All-Hands Meeting/Build Day

18 Programming and Wiring

22 All-Hands Meeting/Build Day

23 Engineering Meeting

24 All-Hands Meeting/Build Day

26 Leadership Meeting

31 All-Hands Meeting/Build Day

January TBD Monthly status reports and

teleconferences

February 2018

07 All-Hands Meeting/Build Day

08 Software Team Call

12 Application Revisions Due

14 All-Hands Meeting/Build Day

15 Programming and Wiring

16 Revision Conclusion Event

21 All-Hands Meeting/Build Day

22 Engineering Team Meeting

23 Leadership Meeting

28 All-Hands Meeting/Build Day

February TBD Monthly status reports and

teleconferences

March 2018

01 Cryo and Vacuum Testing begins

06 Engineering Meeting

07 All-Hands Meeting - Discuss PSIP

13 Programming and Wiring

14 All-Hands Meeting

22 Engineering Meeting

28 All-Hands Meeting

30 Leadership Meeting

March TBD Monthly status reports and

teleconferences

April 2018

03 Engineering Meeting

04 All-Hands Meeting

11 All-Hands Meeting

13 PSIP Draft 1 due

18 All-Hands Meeting

18 PSIP Final Draft due

24 Engineering Meeting

25 All-Hands Meeting

27 Leadership Meeting

27 Apr 2018 Preliminary PSIP document due

April TBD Monthly status reports and

teleconferences

May 2018

01 Engineering Meeting

02 All-Hands Meeting

09 All-Hands Meeting

16 All-Hands Meeting

23 All-Hands Meeting

29 Engineering Meeting

30 All-Hands Meeting

31 Leadership Meeting

May TBD Monthly status reports and

teleconferences

June 2018

26 FLOP live for contribution

29 Final PSIP document due

June-July TBD Testing at Goddard Space

Flight Center

June TBD Monthly status reports and

teleconferences

July 2018

05 FLOP Draft 1 due

18 FLOP Final draft due

23 Payload Integration at CSBF

26 Final FLOP document due

27 End Payload Integration at CSBF

July TBD Monthly status reports and

teleconferences

August 2018

13 Classes in session

August TBD Monthly status reports and

teleconferences

September 2018

01 Sep - 05 Sep 2018 Flight preparation

06 Target flight ready

07 Target launch date and flight operations

08-11 Recovery, packing and return shipping

14 tUR GOAT PLAR

17 Science Team begins lab work

September TBD Monthly status reports and

teleconferences

October 2018

30 Data Due

October TBD Monthly status reports and

teleconferences

November 2018

01 Final report live for contributions

TBA SNCURCS Presentation

27 Draft Due

November TBD Monthly status reports and

teleconferences

December 2018

07 Final Flight / Science Report due

**tUR team will be building our payload regardless of application acceptance, so we will begin preliminary

builds in late December.

Payload Interface Specifications
Describe what HASP resources you will use and how your payload will fit within the constraints.

1. Weight budget with uncertainties

 Part File Name Material Quantity Mass (g)

Error

(±g)

Frame and Body

 Right Aluminum (Panel) 6061 Al Sheet 1 58.8 0.1

 Mid Plate 6061 Al Sheet 1 427.3 0.1

Right Aluminum Panel (EDAC and

DB9) Ports 6061 Al Sheet 1 75.3 0.1

 Left Aluminum Panel 6061 Al Sheet 1 297.8 0.1

 Front Aluminum Panel 6061 Al Sheet 1 78.5 0.1

 Bottom Aluminum Panel 6061 Al Sheet 1 459.6 0.1

 Front And Rear Clear Panel Lexan 2 88.9 0.1

 Top Panel Lexan 1 128.8 0.1

 Frame Assembly

1"x1"x0.125" Al

Angle 1 1834.4 0.1

 Panel Fasteners 18-8 Stainless 15 1.5 0.5

 Mount Plate Fasteners 1/4" 18-8 Stainless 8 1.7 0.5

 Washers/Misc Fasteners Stainless 1.0 0.5

 subtotal 3453.5 2.4

Robotic Arm Base

 28mm Hex Standoff Stainless 4 64.3 1.0

 10mm Hex Standoff Stainless 4 22.6 1.0

 Lower Plate 6061 Al Sheet 1 32.3 0.1

 Mid Plate Base Assembly 6061 Al Sheet 1 33.1 0.1

 Top Plate 6061 Al Sheet 1 15.6 0.1

 Top Plate Outer 6061 Al Sheet 1 16.2 0.1

 0.25" Thin Ball Bearing Stainless Steel 1 27.0 2.0

 Bearing Fasteners 18-8 Stainless 4 0.4 0.5

 Bearing Hex Nut 18-8 Stainless 4 0.3 0.5

 subtotal 211.8 5.4

Robotic Arm

(Lower Assembly)

 Arm Bracket A 6061 Al Sheet 1 14.8 0.1

 Arm Plate A 6061 Al Sheet 1 22.6 0.1

 Arm Plate B 6061 Al Sheet 1 23.2 0.1

 Lower Arm Inner Bracket 6061 Al Sheet 1 10.1 0.1

 Servo Arm Bracket 6061 Al Sheet 1 7.7 0.1

 Servo End Bracket 6061 Al Sheet 1 9.3 0.1

 Small Screws 18-8 Stainless 8 0.1 0.5

 Pivot Fastener 18-8 Stainless 1 0.1 0.5

 Bracket Fasteners 18-8 Stainless 6 0.7 0.5

 subtotal 88.6 2.1

Upper Robotic

Arm

 Arm Bracket B 6061 Al Sheet 1 15.2 0.1

 Arm Plate C 6061 Al Sheet 1 19.2 0.1

 Arm Plate D 6061 Al Sheet 1 18.7 0.1

 Servo End Bracket 6061 Al Sheet 1 9.3 0.1

 Servo Arm Bracket 6061 Al Sheet 1 7.7 0.1

 Arm Bracket C 6061 Al Sheet 1 12.7 0.1

 Small Screws 18-8 Stainless 12 0.1 0.5

 Pivot Fastener 18-8 Stainless 1 0.1 0.5

 subtotal 82.8 1.6

Robotic Hand

 Servo Bracket A 6061 Al Sheet 1 2.8 0.1

 CV and Servo Combo Bracket 6061 Al Sheet 1 9.8 0.1

 Left Jaw Al Stock 2 6.8 1.0

 Gripper Base Al Stock 1 22.3 1.0

 Gripper Cap Al Stock 1 4.2 1.0

 Bracket Fasteners 18-8 Stainless Steel 4 0.2 0.5

 Cap Fasteners 18-8 Stainless Steel 6 0.1 0.5

 Track Plastic 2 0.1 0.1

 subtotal 46.3 4.3

Electronics

 Regulator Housing

6061 Al Sheet/Al

Stock n/a 59.2 0.1

 Arduino Mega/MK100 Rack ABS 1 56.2 1.0

 Arduino Mega/MK100 Delrin Plate Delrin 1 21.0 1.0

 Raspberry Pi/Robo Pi Rack ABS 1 52.0 1.0

 Raspberry Pi/Robo Pi Delrin Plate Delrin 2 27.0 1.0

 Wiring Allowance various n/a 750.0 225.0

 Arduino MK100 n/a 1 32.0 1.0

 Sparkfun R232 Shifter n/a 1 30.0 1.0

 LM2596 DC to DC n/a 3 59.5 1.0

 Arduino MEGA n/a 1 37.0 1.0

 BME280 n/a 4 4.0 1.0

 Weatherproof TTL Camera n/a 4 600.0 100.0

 Arduino Micro n/a 1 65.0 1.0

 Raspberry Pi n/a 1 31.0 1.0

 RoboPi Expansion Board n/a 1 15.0 1.0

 Thermocouple Amp MAX31855 n/a 14 18.6 1.0

 Servo Batan B2122 n/a 7 110.7 1.0

 Pixycam CMUcam5 n/a 1 25.5 1.0

 Fasteners various 8 2.0 1.0

 subtotal 1995.7 341.1

Busy Box

 Busy Box Mounting Post Al Stock 2 675.8 0.1

 Busy Box Mounting Plate 6061 Al Sheet 1 186.5 0.1

 Slider Block Brackets 6061 Al Sheet 2 51.9 0.1

 Push Button Actuators n/a 2 48.0 5.0

 Toggle Switches n/a 2 143.0 5.0

 Rocker Switches n/a 2 76.0 5.0

 Potentiometer n/a 1 22.0 5.0

 Potentiometer Knob ABS 1 19.8 5.0

 Cube Slider Block (w/linkage) ABS 1 21.7 5.0

 Sphere Slider Block (w/linkage) ABS 1 13.4 5.0

 Velcro Strips for Slider Blocks 2 7.0 5.0

 Velcro Strap 1 45.0 5.0

 Elastic Strapping CotS 3 85.0 5.0

 Fasteners Stainless steel 17 20.0 5.0

 subtotal 1415.1 55.3

 Mass (g)

Error

(±g)

Mass

Total:

7293.

7

412.

2

2. Mounting plate footprint

○ Please note in the model below (where the ‘Keep-Out’ part of the plate has been colored
red and the normal build plate colored green) that we fit within the allotted space. See
the ‘Drawings’ section for more detailed illustrations of this point.

3. Payload height

○ Our payload height is 30.0 cm, or 11.81 in. See the ‘Drawings’ section for more
detailed illustrations of this point.

4. Power Budget: Introduction

A large payload on HASP provides a total power of 75 watts (30 volts @ 2.5 amps.) RAM will
use this, and only this, to power four separate systems:

● network system,
● camera system,

● Busy Box,
● robotic arm.

RAM will take power from HASP through the EDAC cable and plug it directly into a power
distribution block that will step it to appropriate voltages and distribute it to the four systems.
Our expected peak draw will be around 52 watts and will not exceed the given 75 watts. To this
end, RAM will be tested for its full operation with a cold fuse and a power supply that does not
restrict itself to pushing only 75 watts.

○ Power Budget: Design

RAM will consist of four major subsystems, each with their own power needs. To do
this, RAM will have an easily-accessed power block that will step voltages to
appropriate levels and distribute them to each system. This power block will receive its
power directly from HASP via the EDAC connector on pins A,B,C,D for power and
W,T,U,X for ground. Each of these four power and ground wires will come together
before connecting to the power block. The subsystems and their components are as
follows:

1. Network management system
a. Components: Arduino MKR-1000 and an RS232 shifter.
b. Purpose: Send and receive data from the HASP gondola and manage the

flow of data on RAM’s local I2C network.
c. Resources: This network will run on an expected voltage of 5V and

should only be a consistent and gentle power draw of 1.25 W.
2. Camera system

a. Components: Arduino Mega, 2-4 space-ready Arduino-compatible
Weatherproof TTL Serial JPEG Cameras, and 2-4 BME-280
environmental sensors.

b. Purpose:
i. Take still images on request for troubleshooting

ii. Film video of operations for post-flight review.
iii. Each camera will have a simple environmental sensor located

near it to take readings on ambient temperature, pressure, and
humidity. The Arduino in this system will be responsible for
managing and reporting this data.

c. Resources: This system will run on a consistent 12V. This system in
particular will be tested for current spikes when the camera takes
pictures. If there is a need, the team will design capacitors into the circuit
to smooth out its power draw.

3. “Busy Box” system
a. Components: Arduino Micro, various switches and potentiometers.
b. Purpose: The robotic arm will be interacting with this system through its

trials; the Busy Box records progress: tracking button presses, switch
throws, etc.

c. Resources: This system will run on a consistent 5V and expects to see a
consistent and gentle power draw of less than 0.25W.

4. Robotic arm
a. Components: Raspberry PI B+ and a Mikronauts RoboPi expansion

board, seven Analog Feedback Micro servos (Adafruit PID 1450), a Pixy
CMUcam5 Sensor, an Arduino-compatible servo controller, 14 K-type
thermocouples with Thermocouple Amplifier MAX31855 breakout
boards (two thermocouples for each servo), and seven capacitors. This 1

system is by far the most complicated.
b. Purpose: Drive the operation of the robot arm through its pre-designed

batteries of dexterity tests.
c. Resources: This will be the largest power draw on the whole system. The

team will likely use a capacitor on each servo to help smooth out the
operation, but we may add more up the line to smooth out the power
draw. This system will draw a varied amount of voltage from 4.8 to 5V
depending on its current action and may see large shifts in power draw
over the course of the flight.

1 We may reduce this number if the cabling gets too cumbersome.

○ Power Budget: Planned Testing

Electrical testing will be a major focus this year for the team, especially after our
difficulties with HASP 2017. The entire payload will operate with a 2.5 A fuse inline
immediately after the 30 V supply from the simulated HASP source. We will map a true
power profile of payload operation, focusing especially on the arm, to more thoroughly
address any potential areas of concern. In addition to the power profile, when
performing thermal tests, the team will make sure that the fuse is also put through the
same heat and cold cycles to make sure that it does not pose a hidden threat to the
operation of the system through adverse thermal conditions.

Total Power Draw for Entire Payload

System Voltage (V) Peak Power (W)

Network 5 1.25

Camera 12 2.14

Busy Box 5 0.10

Robotic Arm 4.8-5
2

47.47

Total Expected Peak Draw: 51.96

Total Power Draw: Network System

Device # Voltage (V) Peak Power (W) Time On

Arduino MKR 100 1 5.0 1.0 Always On

Sparkfun RS232 Shifter - SMD 1 5.0 0.25 Always On

Total Power Draw: Camera System

Device # Voltage (V) Peak Power (W) Time On

Arduino Mega 1 12.0 0.08 Always On

Adafruit BME280 4 3.0 < 0.01 Always On

Adafruit Weatherproof TTL Camera 4 5.0 1.30 Always On

2 5V for most of the system, 4.8V for servos.

Total Power Draw: Busy Box System

Device Count Voltage (V) Peak Power (W) Time On

Arduino Micro 1 5.0 0.10 Always On

Total Power Draw: Robot Arm System

Device Count Voltage (V) Peak Power (W) Time On

Raspberry Pi B+ 1 5.0 6.70 Always On

RoboPi Expansion Board 1 5.0 5.00 During Trials

Thermocouple Amplifiers MAX31855 14 3.3 0.07 Always On

Servo Batan B2122 3
7 4.8 35.0 During Trials

Pixycam CMUcam5 1 5.0 0.7 Always On

3 System will use capacitors to smooth out operation and counteract increased power draw from inductance at the start of
operation.

5. Downlink serial telemetry rate & uplink serial command rate

Serial Uplink and Downlink: Introduction
A large payload on HASP can send commands from the ground and data to the HASP gondola

for downlinking at a baud rate of 4800. This Serial Uplink and Downlink system allows for payloads to
communicate with the HASP gondola over an RS232 line; the HASP gondola then communicates with
the ground. RAM will have an Arduino MKR-1000 whose sole job will be to manage all
communications, not only between RAM and the HASP gondola, but also the local I2C network
between subsystems.

Serial Uplink and Downlink: Design

RAM will use an Arduino MKR-1000 to communicate with the HASP gondola over an RS232
shifter, as Arduino does not have a built in RS232 output. This RS232 shifter will take TTL output
from the Arduino and shift it to RS232 levels, allowing communication with the HASP gondola.
Arduino’s native TTL Serial library can be throttled to 4800 baud rate, which guarantees that RAM
never exceeds its allotted bandwidth. Additionally, Arduino serial default communication parameters

are aligned with HASP’s (8 data bits, no parity, 1 stop bit, and no flow control.) The managing
Arduino will act as sentinel and secretary for all data traveling between HASP gondola and payload.

All commands sent from the ground will go through the RS232 shifter and to the managing
Arduino. The first byte of all commands will be reserved for identifying which device on the I2C
network the command is meant for. The second byte will be the command itself. The manager will
take the received command and convert it to a format that is acceptable for the I2C local network and
send it over the network with the appropriate ID proceeding it.

RAM will plan to receive a GPS message from HASP every 60 seconds for time syncing since
Arduinos do not (natively) carry any internal clocks.

All data sent from RAM subsystems will pass through the network master first. This means that
all experimental related data will be coming to the master over the local I2C network first. As such, it
will be the master Arduino’s job to manipulate the data into the planned formats and use bandwidth in
the most efficient manner for downlinking with the 4800 baud restriction. The master will also be
capable of storing data over a period of time for downlinking at a later instance, as pictures being sent
from the camera subsystem may take more than one packet to get the entire picture down, and thus will
utilize all available bandwidth for a time. Other information will fill up a queue for downlinking later.

Serial Uplink and Downlink: Planned Testing:
For testing the Serial Uplink and Downlink system, the team plans to develop a true HASP

simulator script this year. In the previous year’s flight, the team relied on using a second Arduino as a
HASP simulator but it was frustrating to use; an Arduino cannot compare to a proper computer. The

simulator will also mimic HASP software in generating files in 30kb chunks. We will write software to
parse this information out quickly and efficiently. A stretch goal of ours is to have the servo position
recordings pulled out and ported either into simulation or a mimic arm that will perform the exact
actions our arm just performed at float. This will give the team live feedback (with a slight delay) of
what actions the arm is doing during operation!

"Data Packet"; assume a standard packet size of 520 bytes Byte Title

Simple '\x1\x21' header indicating the start of a new packet of data. 1-2 Header

I2C ID specific to the system that generated the data. 3 System of Origin

8 byte time_t value: time data was sent from network manager to HASP

gondola. 4-12 Time Sent Gondola

8 byte time_t value: time data was sent from its system of origin to the

network manager. 13-21 Time Sent Master

Single byte: number of different data chunks in the Data Packet section. 22
Number of Data

Chunks

Two bytes: total size of actual data represented in the Data Packet section. 23-24
Total Size of Data

Chunks

Checksum / allows room for growth as the project develops. 25-30 Checksum / Filler

Actual meat of a packet. It could be any of the following:

- image data

- ambient condition data

- robotic arm data

- Busy Box status

- trial data 51-518 Data Packet

Simple '\x3\xD' terminator indicating the end of a packet of data. 519-520 Terminator

Image Data; assume a maximum packet size of 467 bytes Byte Title

Constant for image parts indicating type: '\x30' 1 Type

Indicates position in an image for reconstruction. 2 Part

Which photo this part belongs to. 3-4 Photo ID

Actual amount of valid data sent in the image part portion. 5-6 Size

Data of an actual part of an image. 7-467 Image Part

Ambient Conditions; assume a static packet size of 28 bytes Byte Title

Constant for ambient conditions and busy box status: '\x31' 1 Type

8 byte time_t value: time these readings were recorded. 2-9 Time

Signed short value: current temperature from BME280 #1. 9-10 BME280 #1 Temp.

Signed short value: current pressure from BME280 #1. 11-12 BME280 #1 Pressure

Unsigned byte value: current humidity from BME280 #1. 13 BME280 #1 Humid.

Signed short value: current temperature from BME280 #2. 14-15 BME280 #2 Temp.

Signed short value: current pressure from BME280 #2. 16-17 BME280 #2 Pressure

Unsigned byte value: current humidity from BME280 #2. 18 BME280 #2 Humid.

Signed short value: current temperature from BME280 #3. 19-20 BME280 #3 Temp.

Signed short value: current pressure from BME280 #3. 21-22 BME280 #3 Pressure

Unsigned byte value: current humidity from BME280 #3. 23 BME280 #3 Humid.

Signed short value: current temperature from BME280 #4. 24-25 BME280 #4 Temp.

Signed short value: current pressure from BME280 #4. 26-27 BME280 #4 Pressure

Unsigned byte value: current humidity from BME280 #4. 28 BME280 #4 Humid.

Busy Box Status; assume a static packet size of 19 bytes Byte Title

Constant for the busy box status: '\x32' 1 Type

8 byte time_t value: time these readings were recorded. 2-9 Time

boolean value: position ON or OFF 10 Switch 1

boolean value: position ON or OFF 11 Switch 2

boolean value: position ON or OFF 12 Switch 3

boolean value: position ON or OFF 13 Switch 4

boolean value: position ON or OFF 14 Switch 5

boolean value: position ON or OFF 15 Switch 6

boolean value: position ON or OFF 16 Switch 7

boolean value: position ON or OFF 17 Switch 8

boolean value: position ON or OFF 18 Switch 9

Current reading from the potentiometer 19 Potentiometer

Robot Arm Conditions; assume a static packet size of 44

bytes Byte Title

Constant for robot arm conditions: '\x33' 1 Type

8 byte time_t value: time these readings were recorded. 2-9 Time

Signed short: temperature readout from this thermocouple. 10-11 Thermocouple 1

Signed short: temperature readout from this thermocouple. 12-13 Thermocouple 2

Signed short: temperature readout from this thermocouple. 14-15 Thermocouple 3

Signed short: temperature readout from this thermocouple. 16-17 Thermocouple 4

Signed short: temperature readout from this thermocouple. 18-19 Thermocouple 5

Signed short: temperature readout from this thermocouple. 20-21 Thermocouple 6

Signed short: temperature readout from this thermocouple. 22-23 Thermocouple 7

Signed short: temperature readout from this thermocouple. 24-25 Thermocouple 8

Signed short: temperature readout from this thermocouple. 26-27 Thermocouple 9

Signed short: temperature readout from this thermocouple. 28-29 Thermocouple 10

Signed short: temperature readout from this thermocouple. 30-31 Thermocouple 11

Signed short: temperature readout from this thermocouple. 32-33 Thermocouple 12

Signed short: temperature readout from this thermocouple. 34-35 Thermocouple 13

Signed short: temperature readout from this thermocouple. 36-37 Thermocouple 14

Current analog position reading from the B2122 servo. 38 Servo Position 1

Current analog position reading from the B2122 servo. 39 Servo Position 2

Current analog position reading from the B2122 servo. 40 Servo Position 3

Current analog position reading from the B2122 servo. 41 Servo Position 4

Current analog position reading from the B2122 servo. 42 Servo Position 5

Current analog position reading from the B2122 servo. 43 Servo Position 6

Current analog position reading from the B2122 servo. 44 Servo Position 7

Trial Data; here we assume a max possible size of 467 bytes Byte Title

Constant for trial data: '\x34' 1 Type

Value for trial type (normal, difficult, easy, integration test, etc.) 2 Trial Type

Unsigned short indicating the unique ID number for this specific trial. 3-4 Trial ID

Unsigned byte that indicates which mode the arm was in. 5 Mode

8 byte time_t value: start time of this trial. 6-14 Start Time

8 byte time_t value: end time of this trial. 15-23 End Time

IDs for specific actions (in case we need to debug/parse individual motions) 24 Action ID

8 byte time_t value: starting time of an action. 25-33
Action N Start

Time*

8 byte time_t value: end time of an action. 34-42 Action N End Time*

* TO N FOR THE NUMBER OF ACTIONS

Command List

Name Byte 1 Byte 2 Description

-- I2C ID
Command

ID

General format for all commands. First byte indicates to the

network manager which system this command should go to. The

second byte is the actual command.

Network System

Name
Command

ID Description

Request Network

Table 0x7F Downlink a list of all systems on the network and their IDs.

Reset 0x31 Force the network manager arduino to reset.

System Reset 0x32
Instruct the network manager to send a hard reset command to all

entities on the network.

Camera System

Name Command ID Description

Request Picture 1 0x7F
Take picture with camera 1, send over I2C to be downlinked when

bandwidth is available.

Request Picture 2 0x7E
Take picture with camera 2, send over I2C to be downlinked when

bandwidth is available.

Request Picture 3 0x7D
Take picture with camera 3, send over I2C to be downlinked when

bandwidth is available.

Request Picture 4 0x7C
Take picture with camera 4, send over I2C to be downlinked when

bandwidth is available.

Request Ambient 0x7B Pack update and send for downlinking.

Toggle AutoUpdate 0x7A
Camera system automatically reports ambient temp every minute; toggles

that on or off.

Reset 0x31 Force the camera system arduino to reset.

Busy Box System

Name Command ID Description

Request Status 0x7F Request a system update from the Busy Box.

Toggle AutoUpdate 0x7E
Busy Box automatically reports any changes (ie, switches switched,

potentiometers turned); this toggles that on or off.

Reset 0x31 force the Busy Box Arduino to reset.

Robotic Arm

System

Name Command ID Description

Warmup +

Diagnostic 0x2E

Put the robot arm into warmup mode: move from resting position to

operating position, perform a few simple actions, and report back its

progress.

Full Stop 0x2F
Stop anything it is doing, clear all command queues, and return to its

resting position.

Cancel 0x30
Cancel any trial in operation and force the arm back to its resting

position.

Reset 0x31 Force the Raspberry Pi and RoboPi expansion board to reset.

Manual Operation 0x32
Force the robotic arm into manual operation. In this state, it will perform

no actual without prompting from the ground via Serial.

Automatic

Operation 0x33
Force the robotic arm into automatic operation. In this state, it will

perform trial action when prompted by the ground via Serial.

Mode 1 0x34 Force the robotic arm into Mode 1.

Mode 2 0x35 Force the robotic arm into Mode 2.

Mode 3 0x36 Force the robotic arm into Mode 3.

Pause 0x37
Stop arm movement; hold in place until further action is sent, or until

this command is sent again.

Reset Queue 0x38 Clear any queued trials.

Perform Trial 1 0x40
[Automatic Mode] signal that the arm should either start performing this

trial or queue up to do this trial.

Perform Trial 2 0x41
[Automatic Mode] signal that the arm should either start performing this

trial or queue up to do this trial.

Perform Trial 3 0x42
[Automatic Mode] signal that the arm should either start performing this

trial or queue up to do this trial.

Perform Trial 4 0x43
[Automatic Mode] signal that the arm should either start performing this

trial or queue up to do this trial.

Perform Trial 5 0x44
[Automatic Mode] signal that the arm should either start performing this

trial or queue up to do this trial.

Perform Trial 6 0x45
[Automatic Mode] signal that the arm should either start performing this

trial or queue up to do this trial.

Perform Trial 1-3 0x46
[Automatic Mode] signal that the arm should either start performing this

trial or queue up to do this series of trials

Perform Trial 4-6 0x47
[Automatic Mode] signal that the arm should either start performing this

trial or queue up to do this series of trials

Perform Trial 2-4 0x48
[Automatic Mode] signal that the arm should either start performing this

trial or queue up to do this series of trials

Increment Servo 1 1 0x7F [Manual Mode] force a specific servo to move 1 degree clockwise.

Increment Servo 2 1 0x7E [Manual Mode] force a specific servo to move 1 degree clockwise.

Increment Servo 3 1 0x7D [Manual Mode] force a specific servo to move 1 degree clockwise.

Increment Servo 4 1 0x7C [Manual Mode] force a specific servo to move 1 degree clockwise.

Increment Servo 5 1 0x7B [Manual Mode] force a specific servo to move 1 degree clockwise.

Increment Servo 6 1 0x7A [Manual Mode] force a specific servo to move 1 degree clockwise.

Increment Servo 7 1 0x79 [Manual Mode] force a specific servo to move 1 degree clockwise.

Decrement Servo 1

1 0x78 [Manual Mode] force a specific servo to move 1 degree counterclockwise.

Decrement Servo 2 1 0x77 [Manual Mode] force a specific servo to move 1 degree counterclockwise.

Decrement Servo 3 1 0x76 [Manual Mode] force a specific servo to move 1 degree counterclockwise.

Decrement Servo 4 1 0x75 [Manual Mode] force a specific servo to move 1 degree counterclockwise.

Decrement Servo 5 1 0x74 [Manual Mode] force a specific servo to move 1 degree counterclockwise.

Decrement Servo 6 1 0x73 [Manual Mode] force a specific servo to move 1 degree counterclockwise.

Decrement Servo 7 1 0x72 [Manual Mode] force a specific servo to move 1 degree counterclockwise.

Increment Servo 1 5 0x71 [Manual Mode] force a specific servo to move 5 degrees clockwise.

Increment Servo 2 5 0x70 [Manual Mode] force a specific servo to move 5 degrees clockwise.

Increment Servo 3 5 0x6F [Manual Mode] force a specific servo to move 5 degrees clockwise.

Increment Servo 4 5 0x6E [Manual Mode] force a specific servo to move 5 degrees clockwise.

Increment Servo 5 5 0x6D [Manual Mode] force a specific servo to move 5 degrees clockwise.

Increment Servo 6 5 0x6C [Manual Mode] force a specific servo to move 5 degrees clockwise.

Increment Servo 7 5 0x6B [Manual Mode] force a specific servo to move 5 degrees clockwise.

Decrement Servo 1

5 0x6A [Manual Mode] force a specific servo to move 5 degrees counterclockwise.

Decrement Servo 2

5 0x69 [Manual Mode] force a specific servo to move 5 degrees counterclockwise.

Decrement Servo 3

5 0x68 [Manual Mode] force a specific servo to move 5 degrees counterclockwise.

Decrement Servo 4

5 0x67 [Manual Mode] force a specific servo to move 5 degrees counterclockwise.

Decrement Servo 5

5 0x66 [Manual Mode] force a specific servo to move 5 degrees counterclockwise.

Decrement Servo 6

5 0x65 [Manual Mode] force a specific servo to move 5 degrees counterclockwise.

Decrement Servo 7

5 0x64 [Manual Mode] force a specific servo to move 5 degrees counterclockwise.

Perform Wave to

Camera 0x30 [Manual Mode] perform a waving action at the HASP gondola camera.

6. Anticipated use of analog downlink channels or additional discrete commands

○ We will not be using analog downlink channels.
○ We will not be using any additional discrete commands.

7. Desired payload location and orientation

○ We have a mild preference for payload slot #12, as it is located closest to the camera
(assuming that the HASP camera location does not change.) We’ll fly our own cameras
but would like to maximize the numbers of eyes we can get on our moving parts for
best troubleshooting in the event of an error. #11 is a fine 2nd choice. We’ll happily take
whatever we can get, though.

8. Potential hazards

 high

S

E

V

E

R

I

T

Y

low

F. Personnel Burn Out B. Personnel drop out

A. Wiring / software bug

causes surge / blows HASP

fuse

J. Sapient robotic uprising

(“Skynet event”) delays

project and/or enslaves

humanity

G. Higher complexity of

networked computers

D. Glare and inconsistent

lighting may interfere with

our computer vision

C. Limitations of ground

testing methods result in

unexpected thermal build

up

H. Behind Schedule

(we’re not, but we might!)

E. Durham Tech business

office sabotages /

introduces significant delays

to procurement pipeline

L. Added electronic

complexity makes

assembly/maintenance

awkward/tedious

K. Welding aluminum (for

our frame)

is finicky and unforgiving

I. Not accepted to HASP

again

low P O S S I B I L I T Y high

Mitigation strategy:
A. Wiring/software bug - Exhaustive, methodical testing is the best way to catch something like this before flight.

THIS TIME WE’RE USING AN OSCILLOSCOPE. We have, in the past, only tested with current-limited power
supplies; we will ensure that future testing reveals any potential overdraws.

B. Personnel Drop Out - This is a big risk. We’re going to front-load as much as possible with build days through
December and January.

C. Thermal Build-Up - We’ll test our equipment at Goddard again and do some theoretical and experimental thermal
modeling, but even the best T/V test isn’t a great simulator of solar load. At the end of the day, our worst-case plan
is to add a large radiator/heatsink to the electronics. Our servos were selected based on U. Bridgeport’s 2015
HASP experiment, so we are reasonably confident in their spaceworthiness.

D. Glare - Fighting glare is a significant problem when our project is driven by computer vision. We can mitigate this
with polarizing filters, non-reflective coatings, and adding our own lighting to make more consistent visual
conditions. We have paired with two organizations familiar with this issue (Duke’s Marine Lab and University of
New Mexico’s ‘Swarmathon’, which runs a yearly computer-vision competition.)

E. Business Office - We are continuing to meet with the Durham Tech business office to resolve previous issues with
purchasing equipment & supplies and, in parallel, pursuing independent funding.

F. Personnel Burn Out - The majority of our team is in their senior year. As above, we are trying to front-load as
much development as possible.

G. Added Software Complexity - With the added complexity of 5 networked systems, the odds that unforeseen bugs
might surface increase. With our front-loaded development schedule we will have more time to test.

H. Behind Schedule - Ms. Hoover will yell at us more than normal if this contingency arises.

I. Not Accepted to HASP - If we don’t get in this year, we’ll just run this as a terrestrial experiment.
J. Robot Revolution/Uprising - Our robot has no legs.
K. Welding Aluminum - We’re aware of the delicacy of welding aluminum, as we are planning to do for large

sections of the frame due to the strength, rigidity, and long-term ease of assembly. We have a trained machinist
with experience welding aluminum, however, and are comfortable with the risk.

L. Added Electronic Complexity - We are mounting our electronics on sliding racks for ease of maintenance and
migrating over to Molex-style connectors rather than screw terminals.

9. Integration & Flight Procedures

Briefly describe of your anticipated procedures during integration with HASP and flight
operations:

○ When we arrive at CSBF, we will first power on RAM to ensure there was no damage
sustained during travel.

○ We will have written a ~5-minute “integration trial” that runs through the most rigorous
possible combination of arm maneuvers and that draws the most electrical current. This
will be helpful for us, internally, as a systems check, and for us, externally, to prove we
operate within the power constraints of HASP. This will involve moving all our arm’s
servos at once while also powering the network, main computer, and Busy Box.

○ Once we are integrated to HASP, we will run the integration trial. If we do not blow a
fuse or otherwise exhibit electronic or mechanical failure during this trial (measured by
the arm reaching target positions within a set time and corroborated by onboard system
logs) we will regard it successful.

○ The integration trial will output a special message that will confirm successful
integration at-a-glance in the data.

○ This should take 10-20 minutes.

10. Additional Resources Requested

You may also request resources that somewhat exceed those specified for your payload class
or those that are not mentioned in this document. However, each such request must be
accompanied by a description of the impact if the requested resource is not granted.

○ We do not require any additional resources or accommodations. 4

○ Our payload design contains no pressure vessels, radioactive materials, biological
materials, lasers, cryogenic materials, high voltage, strong magnets, pyrotechnics,
intentionally-dropped components, or hazardous chemicals.

4 Other than allowing our underaged, open-toed, foreign-national tarantula, wielding high-pressure propane tanks, on the
flight line unsupervised.

Preliminary Drawings
● Construction narrative

○ Frame: Our frame will be horizontal octagons of ⅛” 6061 aluminum angle, welded
together, supported in the vertical by 8 pieces of ⅛” 6061 aluminum u-channel, also
welded together. The frame’s primary purpose is to be an over engineered roll-cage to
protect the arm and electronics in the event that the HASP rigging falls onto the payload
during landing; its secondary purpose is to support our thermal insulation and our
electronics.

■ The frame is bolted to the PVC plate and aluminum baseplate (from a sheet of
1/16” 6061) by 8 ¼” steel bolts.

■ The aluminum shelf in the middle of the payload which holds the robot arm will
be made from 3/32” aluminum.

■ The electronics basement and Busy Box will be contained in 1/16” aluminum
sheet, painted white, lined with multi-layer insulation (MLI.)

○ Busy Box: The Busy Box will consist of a single bulkhead of 1/16” aluminum into
which are mounted all switches, knobs, etc. Electronics will be attached to the plate
from behind, on insulating standoffs and/or 3D-printed boxes of ABS plastic. The entire
Busy Box bulkhead will slide into two channels in the vertical mounting posts, which
we will bolt to the frame. Two set-screws will hold it securely in place. We will be able
to access Busy Box wiring and electronics by removing the lid plate and by opening the
three hatches on the back of the Busy Box. This gives us a sturdy payload that requires
relatively little bolting together, yet which is modular enough to replace or repair
malfunctioning components.

○ Electronics Basement: The basement is defined by the bottom plate, the ‘middle shelf’
through which the arm is mounted, and the sides of the payload. We plan on routing and
tagging most of our wiring while this shelf is removed, then adding the shelf and
plugging the microcontrollers etc. in with mini-Molex connectors.

○ Robot Arm:
■ The body of the robot arm will be made from 1/16” 6061 aluminum. Most

pieces will be machined individually, though some will require forming with a
sheet metal brake.

■ We have designed our gripping ‘hand’ to simplify its kinematics; while most
grippers extend forward as a part of the act of pinching shut, ours is simpler and
only requires a single rack-and-pinion track/servo interface to drive it. (see
image below)

■ The bearing’s purpose is to distribute the stress on the servo output shaft. We
copied our bearing dimensions and orientation from one of our ‘tutorial’ arms, a
commercial-off-the-shelf toy robot arm, and it seemed to work well.

● Dimensioned Drawings

● Power Circuit Diagram

● Network Block Diagram

Wiring Diagram (***Please see this folder for full-resolution images of all diagrams***)

https://drive.google.com/open?id=1EVUGSPDRtJkhPVGYNygcXe4T7xKf3Y3l

● Anticipated modifications to payload mounting plate

● Sketches of mounting structure

● Preferred payload orientation and location on HASP

○ See diagram above; we prefer payload slot 12 or 11. Our payload’s fore/aft will align with the
HASP gondola’s fore/aft (and will be clearly labeled as such.)

Works Cited

Dunbar, Brian. "In-space Robotic Manufacturing and Assembly (IRMA)." NASA STMD: Tech

Demo Missions. 13 Sep 2017. Web. https://www.nasa.gov/mission_pages/

tdm/irma/index.html.

Dunbar, Brian. "Robotic Arm." Mars Phoenix. 22 May 2008. Web.

https://www.nasa.gov/multimedia/imagegallery/image_feature_1089.html.

Dunbar, Brian. "The Robotic Servicing Arm." NASA Satellite Servicing Projects Division. Web.

https://sspd.gsfc.nasa.gov/robotic_servicing_arm.html.

Greicus, Tony. "Testing for Instrument Deployment by InSight's Robotic Arm." NASA InSight

Mars Lander. 4 Mar 2015. Web. https://www.nasa.gov/jpl/insight/pia19144.

"High Altitude Student Platform." Louisiana State University Space Sciences Group. Web.

http://laspace.lsu.edu/hasp/.

Pultarova, Tereza. "Company Aims to Launch Satellite-Servicing Spacecraft in 2020."

Space.org. 15 Jul 2017. Web. https://www.space.com/37205-satellite

-service-repair-spacecraft- 2020.html.

"UCS Satellite Database." Union of Concerned Scientists. 7 Nov 2017. Web.

http://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-

database#/Wg5JMEqnEdU.

University of Bridgeport. "High Altitude Robot Servo Motor Test." HASP Student Payload

Application for 2016. (2016): Web. http://laspace.lsu.edu/hasp/groups/2016/applications/

Payload_11/ UB_HASP2016_Flight_Application.pdf.

University of Bridgeport. "University of Bridgeport HASP Servo-Motor Testbed." Web.

http://laspace.lsu.edu/hasp/

http://laspace.lsu.edu/hasp/groups/2016/science_report/Payload_11/UB_HASP_2016_Science_

Report.pdf.

