

Payload Title:	Student Payload Integrated First Flight (SPIFF)		
Payload Class:	Small Large (circle one)		
Payload ID:	2012-01		
Institution:	Boston University / GA Tech / New Mexico Tech		
Contact Name:	Nathan Darling		
Contact Phone:	617 353 0285		
Contact E-mail:	nathandarling@gmail.com		
Submit Date:	May 20, 2012		
I. Mechanical Specifications:			

A. Measured weight of the payload (not including payload plate): 2.3 kg (estimated)

B. Mechanical drawing detailing the major components of SPIFF payload and mounting:

SPIFF Payload Components

- 1. Electric Field Mill Assembly (EFM)
- 2. EFM Supports
- 3. Тор Сар
- 4. Side Walls
- 5. Structural Health Monitoring Assembly
- 6. nanoCDH Single Board Computer
- 7. BUSAT C&DH Circuit Board
- 8. BUSAT Magnetometer
- 9. SPIFF Interface Circuit Board
- 10. ClydeSpace EPS
- 11.SPIFF Power Regulation Circuit Board
- 12. Bottom Cap

Figure 1: Payload Components

C. Other relevant mechanical information:

i. It should be noted that the electric field mill has a rotating part that could be damaged if stray wires or small components are dropped into the sensor.

II. Power Specifications:

- A. Measured current draw at 30 VDC: 0.33 A (estimated)
- B. Power system wiring diagram starting from pins on the student payload interface plate EDAC 516 connector through SPIFF power conversion to the voltages required by C&DH and payload subsystems: (see Figure 2).
- C. Other relevant power information:
 - i. The ClydeSpace FlexUEPS (off-the-shelf) will provide power management for the SPIFF mission.

Downlink Telemetry Specifications:

D. Serial data downlink format: Stream

Packetized (circle one)

- E. Approximate serial downlink rate (in bits per second): 0.58 bps
- F. Specify your serial data record including record length and information contained in each record byte:

Mode	Rate
Nominal telemetry rate	277 bytes/min

Description	Length
DOWNLINK PACKET	
Starting word	1 byte
System time	4 bytes
Packet ID	2 bytes
Number of payloads	2 bytes
System status	2 bytes
Number of payload packets	2 bytes
Payloads packets	N packets
Checksum	8 bytes
PAYLOAD PACKET	
Instrument code	1 byte
Instrument status	1 byte
Time of packet arrival	4 bytes
Packet length	2 bytes
Data	N bytes
<u>HUB</u> DATA (incl. mag.)	
Subsystem data	N = 8 bytes
EFM DATA	
Subsystem data	N = 8 bytes
<u>SPH</u> DATA	
Subsystem data	N= 8 bytes

- G. Number of analog channels being used: 2 Analog Downlink Channels
- H. If analog channels are being used, what are they being used for:

Analog Channel	Description
Analog 1	Temperature Data
Analog 2	Raw Electric Field Mill Data

I. Number of discrete lines being used: None

(circle one)

- J. If discrete lines are being used what are they being used for: N/A
- K. Are there any on-board transmitters? If so, list the frequencies being used and the transmitted power: N/A
- L. Other relevant downlink telemetry information: N/A

III. Uplink Commanding Specifications:

- A. Command uplink capability required: (Yes) No
- B. If so, will commands be uplinked in regular intervals: (Yes) No (circle one)
- C. How many commands do you expect to uplink during the flight (can be an absolute number or a rate, i.e. *n commands per hour*): Approximately 6 commands per hour
- D. Provide a table of all of the commands that you will be uplinking to your payload:

Command bytes are chosen to minimize possibility of uplink errors. These commands correspond to transitions between three modes of operation.

Description	Command
Downlink (Send Data Packets)	0x3C
Diagnostic	0xD6
Off (Stop Taking Data)	0x1F
Resume	0x95
Reset	0x48

- E. Are there any on-board receivers? No. If so, list the frequencies being used: N/A
- F. Other relevant uplink commanding information: N/A

IV. Integration and Logistics

- A. Date and Time of your arrival for integration: TBD
- B. Approximate amount of time required for integration: 3 hours
- C. Name of the integration team leader: Nathan Darling
- D. Email address of the integration team leader: nathandarling@gmail.com

E. List **ALL** integration participants (first and last names) who will be present for integration with their email addresses:

Name	Email
Nathan Darling	nathandarling@gmail.com
Christopher Hoffman	cman2790@bu.edu
Joshua Mendez	ub313@gatech.edu
Jordan Klepper	jaklepper@gmail.com
Matthew Landavazo	matthewlandavazo@gmail.com

- F. Define a successful integration of your payload:
 - i. 10-minute "day in the life" test completed, associated data downloaded from nanoCDH / C&DH board
 - ii. EFM and temperature data (analog channel) received during "day in the life" test.
- G. List all expected integration steps:
 - i. Mechanical interface (structural and electrical) via mounting plate completed
 - ii. Functional tests (run C&DH diagnostics for payload and bus systems)
 - iii. "Day in the life" test
 - iv. De-bug and re-run if necessary
- H. List all checks that will determine a successful integration:
 - i. Data from "day in the life" test within expected parameters.
 - ii. Analog downlink data within expected parameters.
- I. List any additional LSU personnel support needed for a successful integration other than directly related to the HASP integration (i.e. lifting, moving equipment, hotel information/arrangements, any special delivery needs...):
 - i. Hotel, rental car, public transportation and meals information would be greatly appreciated
 - ii. No lifting or delivery needs.
- J. List any LSU supplied equipment that may be needed for a successful integration:
 - i. Possibility of needing simple lab instrumentation or supplies (soldering iron, multimeter, etc) exists.

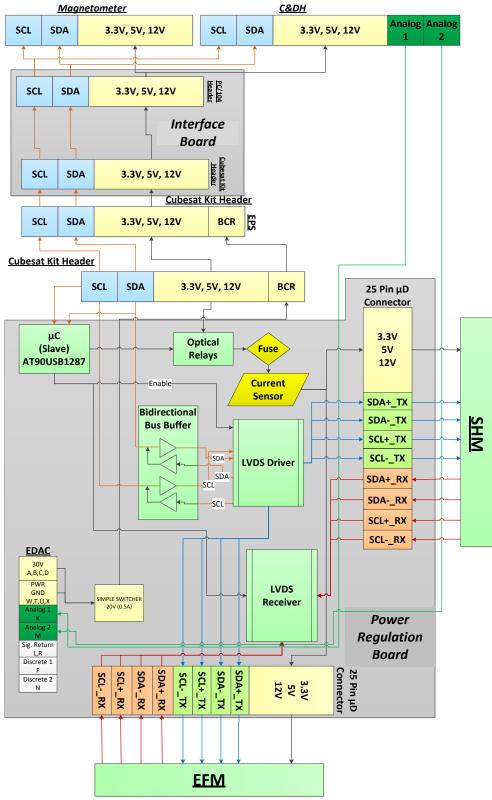


Figure 2: Wiring Diagram