PSIP Maple Leaf Particle Detector

Andreas Buttenschön Cory Hodgson, Laura Mazzino, Wyatt Johnson and Quinn Farr

Department of Physics University of Alberta Edmonton AB T6G 2G7 Canada

June 1, 2011

Revision: 2.00

Payload Title: Maple Leaf Particle Detector

Payload Class: Large

Payload ID: 009

Institution: University of Alberta

Contact Name: Laura Mazzino

Contact E-mail: mazzino@ualberta.ca

Submit Data: June 1, 2011

1 Mechanical Specifications

- A. Payload total weight: 17.872kg
- B. Mechanical Drawing: (see appendix)
- C. Hazardous Materials: None
- D. Additional Information: None

2 Power Specifications

- A. Measured current draw at 30.75 ± 0.01 VDC: (Nominal payload design without the heater, this design was Thermal/Vac tested) 18 ± 2 mAmps (worst case: with heater included) 188 ± 2 mAmps,
- B. See appendix for power diagram. EDAC and EPS Connection:

Figure 1: EDAC connector

C. Additional Information: None

3 Downlink Telemetry Specifications

- A. Data format: Digital packet.
- B. Each second a packet will be send, therefore require 34bytes/second or 272bits/second.
- C. Serial data record, the total length is 34 bytes.

Byte	Bits	Туре	Description
1-2	16	uint16_t	Board ID
3-4	16	uint16_t	Packet ID
5-6	16	uint16_t	HV1
7-8	16	uint16_t	HV2
9-10	16	uint16_t	HV3
11-12	16	uint16_t	T1
13-14	16	uint16_t	T2
15-16	16	uint16_t	T3
18-21	32	uint32_t	seconds since sys start
22-23	16	uint16_t	msecs since last second
24-25	16	uint16_t	temperature
26-27	16	uint16_t	pressure
28-32	16	$3 \times$ uint16_t	reserved
33-34	16	uint16_t	CRC checksum
total 34 bytes.			

Table 1: Data Format

- D. Number of analog channels used: None
- E. If analog used, what are they used for? N/A
- F. Number of discrete lines being used: The two assigned by HASP
- G. If discrete lines being used what are they being used for? On/Off
- H. Are there any on-board transmitters? N/A
- I. Other relevant downlink telemetry information? N/A

4 Uplink Commanding Specifications

- A. Command link capability required? No
- B. If, so will commands be uplinked in regular intervals: N/A

- C. How many commands do you expect to uplink during the flight (n commands per hour): N/A
- D. Table of all commands, that you will be uplinking to your payload: N/A
- E. Are there any on-board receivers? No
- F. Other relevant uplink commanding information? N/A

5 Integration and Logistics

- A. Date and Time of your arrival for integration: The student team will arrive on the 31st July, the supervisors will arrive TBD, at Palestine TX. We will be available to integrate at any time assigned by HASP from August 1 to August 5.
- B. Approximate amount of time required for integration: 3 hours (2 hour setting up and mounting the detector on the mounting plate, 1 hour for communication and power testing)
- C. Integration team leader: Andreas Buttenschön
- D. Integration team leader E-mail: and reas. buttenschoen@ualberta.ca
- E. All integration participants

Name	Nationality*	Email-address
Andreas Buttenschoen	German	andreas.buttenschoen@ualberta.ca
Laura Mazzino	Italian	mazzino@ualberta.ca
Cory Hodgson	Canadian	crhodso@ualberta.ca
Wyatt Johnson	Canadian	wyatt@ualberta.ca
Quinn Farr	Canadian	qfarr@ualberta.ca
Ian Mann	British	imann@ualberta.ca
Jonny Rae	British	Jonathan.Rae@ualberta.ca

Table 2: *Photocopy of passports and additional information available upon request.

- F. Define successful integration of your payload. Successful integration is defined as that the payload passes:
 - Mechanical fit
 - Electrical system
 - * Successful turn on.
 - * Current lies within expectation
 - Successful communication with HASP platform.
 - Successful environmental testing
 - * Heater (if included) functions properly
 - Successful data output, full uncorrupted data packet received.
- G. List all integration steps:

- Mechanically mount the payload
- Connect power cable
- Turn on
- Measure current draw
- Connect data/communications cable
- Verify that communications with the platform is working
- Do a count test for the length of the Vacuum test
- H. List all checks that will be determine a successful integration: All items in point F.
- I. Any other LSU personnel support needed? Michael Stewart and Gregory Guzik.
 - Introduction to the facility
 - Familiarization with the gondola and the interface
 - Answering Q&A if any arise
- J. list any LSU supplied equipment required for integration? None required.

Appendix

