Microwave Reception Experiment MRE II

MICROWAVE RECPECTION EXPERIMENT CHARACTERIZATION OF THE 49-59 GHz BAND

Design Package

TABLE OF CONTENTS

TITLE

PAGE

1. ABSTRACT	3
2. SCIENTIFIC OBJECTIVES	4
3. FLIGHT INFORMATION	5
4. PAYLOAD STRUCTURAL DESIGN AND CONSTRUCTION	10
5. THERMAL SYSTEM DESIGN	22
6. MICROWAVE RADIOMETER DESIGN	30
7. DATA ACQUISITION DESIGN	33
8. STRESS ANALYSIS	42
9. VIBRATION ANALYSIS	47
10. THERMAL SIMULATION	53
11. RECEIVER SIMULATION	62
12. DIGITAL PROCESSING SIMULATION	67
13. APPENDICES	71
A. PROOF OF VIABILITY CALCULATIONS	71
B. FLIGHT INFORMATION	76
C. MECHANICAL DRAWINGS	92
D. MATERIAL SPECIFICATIONS	122
E. THERMAL SYSTEM	132
F. RECEIVER EQUIPMENT	144
G. DIGITAL DESIGN	158
H. STRESS ANALYSIS	161
I. VIBRATION ANALYSIS	191
J. THERMAL SIMULATION	205
K. RECEIVER SIMULATION	251
L. TECHNICAL DATA	258

1. ABSTRACT

MRE II, the Microwave Reception Experiment, focuses on characterizing the microwave background at stratospheric altitude in the frequency band between 55 and 65GHz via a high altitude student balloon payload that will fly for nearly 19.5 hours and reach a maximum of roughly 38.2 kilometers. MRE II is designed to use the latest passive microwave reception technology on the smallest scale ever attempted to capture and analyze these waves. The payload has to be designed to withstand a 10g vertical and two 5g horizontal shocks and provide ample thermal and vibration protection to ensure proper operation and the survival of all of the electronic equipment on board. MRE II must do this with a limited budget, weight limit of 20 kilograms, limited construction area, and 75 watt power budget.

2. SCIENTIFIC OBJECTIVES

When MRE II is fully constructed, it will be able to see, measure, process, and analyze microwaves that line in the V-Band from 55 to 65 GHz. There are relatively few sources of microwave radiation at the cruise altitude of 38.2 kilometers. These sources are:

- The cosmic microwave background
- Atmospheric emission lines (primarily oxygen, ozone, and water vapor)
- Atmospheric continuum emission
- Diffuse galactic continuum (free-free and synchrotron emission)
- Galactic line emission (primarily CO lines, but there are others)

Figure 3.1 shows the above mentioned sources as a function of the antenna temperature.

Figure 3.1: Microwave Emission Spectra Expected at Cruise Altitude, Courtesy of Alan Kogut, Senior Engineer, WMAP

From Figure 3.1, the cosmic microwave background has a blackbody spectrum at 2.725 K. Except for the bright atmospheric lines it will be the dominant source at 120,000 feet. The atmospheric radiation is generally fainter than the CMB except for the complex of oxygen and ozone lines near 60 GHz. Galactic continuum emission spectra is negligible above a few GHz, while the Galactic line emission is fainter still. Calculations performed during the initial stages verified this and even showed that solar radiation will not adversely affect the operation of the receiver equipment. These calculations can be seen in Appendix A.

The primary area of interest for MRE II will be the center frequency band on the chart (55-65 GHz as stated above). At these frequencies, atmospheric emission lines will dominate. The atmospheric lines are pretty narrow at these frequencies, requiring the designed receiver to have at least 1 GHz of spectral resolution to see anything of

significance. Anything broader will lump the complex of lines near 60 GHz into one big bump when processed. The data collected from this experiment would be used as design data for a future cryogenically cooled receiver that would be able to see with precision the CMB.

3. Flight Information

4.1 INTRODUCTION

The most important information that is utilized for designing the systems incorporated for MRE II is the flight information. The vibration analysis requires the horizontal wind data to determine the frequencies of oscillation due to vortex shedding. The thermal analysis requires property data to determine the heat lost during the flight and the heat load on the heaters. It is therefore critical to have all of this data centralized and available for both of these analyzes. This section will explain how the data was obtained and show the most critical properties and data in various figures. Appendix B gives the equations for the data as well as plots for all of the data on the worksheet entitled "Flight Profile for HASP Flight Based on U.S. Standard Atmosphere, 1976".

4.2 PROVIDED FLIGHT DATA

The data obtained from HASP and used for analysis purposes was from the previous year's flight (2007).HASP provided little in the way of flight data though. On the HASP website, HASP only has listed the altitude for a given time. The altitude data is very limited; the times vary greatly between altitude readings. The previous year's flight data showed that the balloon was in the air for 19.04 hours. The takeoff altitude was 1270 kilometers. The last altitude given by HASP was 13.58 kilometers; this was far short of the actual landing altitude. Therefore, the last altitude was lowered to roughly 3.54 kilometers, which extended the flight time to just over 19.3 hours. The original flight data is given in Appendix B on the worksheet "HASP Flight Data." The flight data was data was linearized to help simplify the different analyzes performed. Linear equations best represented the flight profile. The flight profile from the developed equations is given below in Figure 4.1.

Total Flight Time, hours

Figure 4.1: Flight Profile Data from HASP Flight 2007

4.3 WIND DATA AND VERTICAL BALLOON VELOCITY DATA

The vertical velocity of the balloon and the wind data are the most important pieces of data used in the design of the payload. The wind data is used to determine the frequencies of oscillation for the vibration analysis. The wind data and the balloon velocity are used for determining the convective heat transfer of the payload. The vertical wind data is simply taken from rate of change of the altitude data.

The [horizontal] wind data is taken from two different sources. The first source is rocket sounding data of the wind profile above the Pacific Missile Range in California in 1960 (Appendix L, High Altitude Wind Data from Meteorological Rockets). This data was used from 15 kilometers to the maximum altitude of the flight. The wind data for lower altitudes was taken from real time laser ranging data above White Sands, New

Mexico. This data was available from the NOAA Profiler Network and provide in Appendix L ("Lower Altitude Wind Data for White Sands, New Mexico from NOAA Profiler Network"). The data is averaged (12 hours).

The wind and velocity data are linearized and defined as functions of the altitude. A plot of the wind and velocity as a function of the total flight time is given below in Figure 4.2. Vi is the horizontal wind, and Vj is the balloon speed.

Wind and Balloon Velocity Data

Total Flight Time, seconds

Figure 4.2: Wind and Balloon Velocity Data given as a Function of Time

4.3 AIR PROPERTY DATA

The air property data is important for the thermal analysis because the equations that govern heat transfer require the temperature, thermal conductivity, dynamic viscosity, pressure, and density of the air at all of the particular points of the flight. All of this data is taken from the 1976 US Standard Atmosphere. The 1976 air standard data was available from open source Matlab code which is available in Appendix B. The air property data was outputted from the code as a function of altitude. This data was then taken and fitted either with linear equations (temperature, thermal conductivity, and dynamic viscosity) or exponential equations (pressure, density). All figures of this data are presented in Appendix B.

4. Payload Structural Design and Construction

5.1 INTRODUCTION

The MRE II payload structure must be designed to the criteria given by HASP. The payload also has to be large enough to enclosure and protect sensitive microwave reception equipment and processing equipment. The payload has to survive the harsh environment during flight and shock that occurs at landing. The MRE II payload structure consists of the following assemblies which will be described in detail later in this section: payload shell assembly, antenna enclosure, insulation panels, and support structure. This section describes in detail the structural requirements that these assemblies must meet outlined by HASP, materials selected for construction, design of each part, and the construction of the payload assembly. Detailed part and assembly drawings with proper dimensioning and fabrication notes are provided in Appendix C. The HASP requirements for the design are given in Appendix L ("HASP Interface Manual Version 2/08/08").

5.2 DESIGN REQUIREMENTS

As stated before in the objectives, the payload is one of four 20 kilogram large class student payloads on the balloon system. All components must be included in the weight budget except the mounting plate. The large payload must fit within the large payload mounting plate mounting area. The diagram for the large mounting plate is given below in Figure 5.1.

Figure 5.1: Large Payload Mounting Plate

The mounting plate allows for an octagon shaped design with overall square dimensions of 12 3/8 inches by 15 7/8 inches. No overhang is allowed into the shaded area below two inches. The payload cannot be taller than one foot, although exceptions are allowed. MRE II exceeds the height requirements by 2 7/16 inches. This extra distance is necessary for the antenna to have a clear view of the sky and for all of the equipment to fit inside. HASP also dictates that the payload structure must be able to withstand a 10g vertical shock and two 5g vertical shocks.

5.3 MATERIALS OF CONSTRUCTION

The materials for this project have been selected to withstand the physical requirements given in the initial project overview. The materials have been selected and sized with a factor of safety in order to safely survive the given conditions. Most of

the material selection and sizing have come from decisions based on general commercial and industrial practices.

5.3a ALUMINUM

The payload structure solely consists of Aluminum alloys. This decision rests on the fact that Aluminum alloys are the most cost effective option for strong, light weight, structures. Aluminum also makes no ductile-brittle transition at sub-zero temperatures, meaning there will be little to no loss of strength during the flight. Aluminum alloys are also readily available in many compositions from most metal suppliers. This payload structure consists of the following Aluminum alloy compositions: 3003, 5052, and 6061. A list of the Aluminum alloys, sizes, and mechanical data selected for this project are shown in Table 5-1, below.

				Yield Strength	Ultimate Tensile
Gauge	Aluminum Alloy	Specification Code	Temper	(ksi)	Strength (ksi)
0.0625"	3003	AMS-QQ-A-250/2	H14	21	22
0.0250"	3003	AMS-QQ-A-250/2	H14	21	22
0.1250"	5052	ASTM B209-07	H32	28	33
0.1250"	6061		T4	16	30

Table 5-1: Selected Alloys, Sizes, and Mechanical Data

The mechanical data shown in the table above supports certain design decisions made in this project. The 3003-H14, available in coil, plate, and sheet is often used in sheet metal work. It is corrosion resistant and has excellent formability. The 3003 alloy was used for the pieces which are simply coverings or barriers from the environment. The 5052-H32 alloy is also available in coil, plate, and sheet. It maintains a high fatigue strength which makes it a good choice for structures with excessive vibration. It is also corrosion resistant and has excellent formability. The parts which are considered structural pieces are made of the 5052 alloy, except for the internal extruded angle member. The internal vertical support columns are made from extruded 6061 Aluminum alloy. This alloy can be extruded to form continuous shapes. This is the reason it was selected for the vertical support columns. It is also capable of being welded without excessive deformation due to heat.

5.3b EXPANDED POLYSTYRENE

The insulation material selected for this project is expanded polystyrene. It is essentially STYROFOAM board. EPS, expanded polystyrene, is a solid plastic which is blown into foam using a blowing agent. It consists of 90-95% polystyrene and 5-10% gaseous blowing agent. The board is placed along the inside surface of the walls and top of the payload. This board will also give the payload shell some damping effect from wind vibration on the outside of the payload. EPS has nominal strength properties that are best utilized when they are in compression. The strength properties of EPS are sufficient for the overall design of the payload. EPS is more important from a design standpoint thermally as it is an excellent insulator and will help keep the heat in and reduce the heat load on the heaters. It is formable by cutting and shaving with a razor knife. It can be purchased in different sizes. This project used the 1" expanded polystyrene board.

5.3c FASTENERS

The selection of metal fasteners involved the issues of weight, function, and cost. The first decision was to select a readily available carbon steel bolt and nut to rigidly attach the structural parts to one another. Aluminum bolts were not selected despite their potential weight saving benefits because their strength would not have been

enough to safely secure the payload together. Grade 5 5/16" and #6 bolts were used. The 5/16" bolts are either 3/4" or 9/16" long (depending on their location) hex head bolt with accompanying nut. The Grade 5 bolts are made of medium carbon steel. These bolts have yield strengths of 85 ksi, well above any expected stress developed (see the stress analysis section for verification of this). The #6 bolts (.138" diameter) are used to fasten the top to the sides and are used in this role as opposed to rivets so the top can easily be taken off repeatedly. Using rivets would require drilling them out each time the top was taken off. These bolts are not structural. Figure 5-2 is a picture of the 5/16" bolt used in this project.

Figure 5-2: 5/16" dia., 0.75" long bolt

The decision for the attachment of the sheet metal to the structural parts (corners) led to the implementation of metal pop-rivets. The use of rivets in general minimizes weight when compared to using bolts in this situation. There are a total of 176 rivets, and that many bolts, undoubtedly steel, would weigh at least three times as much. Aluminum pop rivets where used instead of stainless steel pop rivets. The stainless steel rivets are much stronger but also much heavier. The high strength was

not need for this application as the sides and ends are not load bearing members. The 3003 aluminum sheet metal, which makes up the outer payload shell covering, required a large number of rivets to attach it to the structural supports. The light weight and low cost of the aluminum rivets sealed the decision. However, the sizing of the rivets required some thought. The project needed a rivet that would securely attach the sides and ends to the corners. Therefore, the decision was made to use a 1/8" diameter rivet with a 1/8" grip length. This grip length was a critical dimension. If the grip length is too large, the rivet would not compress the mating materials together. However, if it is too small, the rivet would fall short of the required length to grip the two mating materials. Figure 5-3 displays a pop-rivet before and after it has been compressed using a pop-rivet gun.

Figure 5-3: Pop-rivet before and after use.

Glue is used in the construction of the antenna enclosure and for securing it to the payload. The type of glue used here is Gorilla Glue. When Gorilla Glue dries, to looks very much like Styrofoam and can be worked the same. Gorilla Glue is very hard, though. Because Gorilla Glue dries like foam, it is unaffected by temperature extremes (this was verified two years ago on the MRE project). These two properties, plus the fact that Gorilla Glues anything to anything, make Gorilla Glue the perfect adhesive for this project. Gorilla Glue is not used on any structural parts. The material data sheet is given in Appendix D.

5.4 PAYLOAD SHELL ASSEMBLY

The Payload Shell assembly is really no more than a glorified box to house electronic equipment in. The payload shell consists of the following parts: long corner, short corner, side panels, long end panel, short end panel, top, top frame, base brackets, and top brackets.

5.4a LONG AND SHORT CORNERS

The both the long corner and short corner (of which there are two each) are the main structural load bearing components of the payload shell. These pieces have to be robust in order to handle the shock received at impact. Both corners are made of 1/8" Aluminum 5052-H32 that spans the whole corner area allowed by the mounting plate. Each corner has three faces; the two short faces are bent at 45 degrees from the longest face inward. Both of these short faces are 1.025 inches long. The third, as stated previously, spans the whole corner, and its length depends on the allowable mounting area for the corner. Each corner is also 12 1/16" high. The extra 1/16" is used to recess the piece into the mounting plate to create a seal to limit air entering the payload and to reduce vibration. Each corner has a 5/16" bolt hole drilled into it 2 9/16" from its base on the longest side to allow them to be secured to the base plate. The bolt is placed at this height because no overhang is allowed lower than 2" above the base plate.

used to secure the side panels to the assembly. Two additional holes at the top of the corners are bolt holes used to help secure the top the rest of the assembly.

5.4c SIDE AND END PANELS

The sides and end panels help tie the shell assembly together. While these pieces do not carry any load, they are necessary to solidify the structure for stability and to close the system thermally. Each panel is made of .025" thick Aluminum 3003-H14. Each piece is 12 1/16" tall, with the 1/16" to minimize vibration as before via recession in the mounting plate. The length of the side panels are the same, but the ends vary because of the mounting plate restriction. Both the ends and the two side panels are secured to the corners with 1/8" rivets.

5.4d BASE AND TOP BRACKETS

The four base brackets used in the shell assembly are to secure the entire shell assembly to the mounting plate, while the four top brackets secure the top and top frame to the corners. The base brackets are made from 1/8" thick Aluminum 5052-H32. The base brackets are unequal legs 3" by 1" with 5/16" holes for bolts placed centered at 2.5" on the long leg and $\frac{1}{2}$ " on the short leg. The top brackets are one inch equal leg angles 1/8" thick made from Aluminum 6061-T4. The top brackets are brazed to the corners 1/8" from the top of the corners to allow the top frame to sit flush. 5/16" bolt holes are placed 3/8" from the ends for securing the top and top frame to the assembly. 5.4e TOP FRAME

The most complex piece of the entire payload, the top frame had to be cut out via a water jet. The top frame also is a major load bearing piece as it will have to absorb a large amount of stress due to the reaction of the payload to the impact. The top frame is

made from 1/8" Aluminum 5052. The top frame is modeled after the allowable mounting area, but with two exceptions. First, the frame is made to fit inside the sides and corners, so it is .025" shorter on the each side and end and 1/8" shorter in the corners than the allowable area. Second, the top frame is offset inward an additional 1/16" to allow for any issues that may arise in the manufacturing of the parts. The top frame consists of a 1" outer rim where holes for mounting to the top brackets and cut-outs to allow the tie-in of the side and end insulating panels are located. In the center area, the frame has various cut-outs to allow for the top insulating panel to tie-in to the frame. The panels are tied-in to the shell to help create a good thermal seal. Also, one of the cutouts in the center area (located by the bar that runs into one of the corners) allows the antenna to protrude from the inner cavity of the shell. This cut-out measures approximately 3.75" by 5". The main reason for all of the cut-outs is not for tying in insulation to the frame; rather, the cut-outs are a weight saving measure as over 65% of the original frame was removed. These cut-outs have the adverse effect of creating multiple stress risers, though, and are thoroughly analyzed in the stress analysis performed. Please refer to the next section of the report for this data.

5.4f TOP

The last piece of the shell assembly, the top is made from .025" thick Aluminum 3003-H14. The top's primary function is to finalize the thermal seal on the box. Its secondary application is to completely solidify the structure to help reduce vibration. The top is the same overall size as the allowable mounting area with a one inch overhang all the way around. This overhang is bent flush with the sides and corners. The overhang is used to create a better thermal seal and to secure the top to the sides and corners of

the payload. This is accomplished with #6 bolts. The top is secured to the top frame with 5/16" bolts. The top also has a cut-out for the antenna the same size as the cut-out is on the top frame.

5.5 ANTENNA ENCLOSURE ASSEMBLY

The antenna enclosure assembly is the next major assembly of the payload. The antenna enclosure, constructed from 3/16" foam core, consists of seven different parts: back, base, cover, Mylar viewing pane, right side panel, left side panel, and top. The assembly is 2 7/16" tall, 4.75" wide, and 6" long. The base has a cut-out area that is the same as the top frame's and top. The cover also has a cut-out area that measures 4.25" wide by 2.94" long. The Mylar viewing pane fits over the cover and is secured via Gorilla Glue. The viewing pane is made from Mylar because it allows the light (radiation) to enter the antenna enclosure without distorting the microwaves. The side panels, top, and back are just solid pieces of foam core cut to fit and tie the assembly together. The assembly is glued together with Gorilla Glue. It is not stress tested as it is a noncritical assembly.

5.6 INSULATING PANEL ASSEMBLY

The insulating panel assembly helps control the heat transfer in and out of the interior of the shell assembly. The assembly also adds strength to the overall structure as it will be in a continuous state of compression due to the panels acting as columns for the top frame. The insulating panels are made from one inch thick expanded polystyrene insulation. There are seven parts that make up the insulating panel assembly: top, sides (2), short end, long end, short corner (2), and long corner (2). The insulating panels are made to fit securely and tight inside the payload shell assembly.

The insulating panel assembly has no appreciable gap between it and the sides of the shell assembly (>.01"). The only variance from this is the 1/8" indentation on the end and side panels to allow for proper clearance for the rivets. The sides and ends are 11 7/8" tall with 1/8" extensions that fit into the top frame. These extensions help to structurally tie the insulating panels to the payload shell and aid in sealing thermally the cavity from the outside environment. The corners have a 3"x1" section removed from the bottom to allow access to the base brackets when assembled. The corners are only 10" tall allow access to the top brackets. The top insulating panel has an overall thickness of 1" with several 1/8" recessions to allow the top frame to sit flush in it. The top insulation panel also has a 3.75" by 5" cut-out to allow for the antenna to protrude through to the top. The top insulation panel has 1" long "fingers" that recess into the side and end panels for a secure fit.

5.7 SUPPORT STRUCTURE ASSEMBLY

The support structure holds and secures all of the electronic equipment (microwave reception, processing, and data storage) within the payload. This fact alone makes the support structure a critically stressed and vibrated assembly. Both of these analyzes are seen later in the report. The support structure has four major components: angled support columns (4), platform tie-ins (12), sensor platform, and platform. Unfortunately, the support structure is to be considered an "incomplete" design. This is due to the lack of equipment specifications from the unavailability of funds. The equipment specifications could only be provided with money available to purchase the equipment, and as of this time, has yet to be accomplished. Therefore, the design of this structure is based on the limited equipment specifications made available from Millimeter Wave's website (all of the equipment specifications are given in Appendix F).

The support columns are 1/8" thick 1" equal leg angles made from Aluminum 6061-T4. The columns are recessed into the mounting plate 1/16" to reduce vibration. The columns are secured to the mounting plate via four of the platform tie-ins with 5/16" bolts. The platform tie-ins are to be brazed or welded to the columns to eliminate any holes into the columns that might weaken the structure. The platform tie-ins are 1/8" thick 1" by 1" and made from Aluminum 5052-H32. The platform tie-ins are also used to secure the sensor platform and platform to the structure. The platforms are bolted to the tie-ins with 5/16" bolts. The sensor platform measures 7.5" by 11" and will sit nearly flush with the top of the columns. How flush or not the sensor platform sits will depend on actual the equipment specifications. The platform will sit lower on the structure and hold the processing and data storage equipment. The platform has the same overall dimensions as the sensor platform but also has an inch added to each end and 7/8" to each side. These extensions are added so a wide range of sizes on processing units (possibly a computer motherboard) could be used. Both the sensor platform and platform are manufactured from 1/16" Aluminum 3003-H14.

5. Thermal Design

6.1 INTRODUCTION

MRE II was established to characterize the noise that occurs in the 55-65 GHz range. In order to acquire this data, very sensitive receiver equipment will be used. The components that comprise the receiver require different operational temperatures which range from -50°C to 50°C. This posed a problem since the temperature during the flight, which will go up 38,000 meters, can reach below -50°C. Thus a thermal system had to be designed and built that can keep the payload's inner temperature within optimal operating range for all the components contained.

6.2 DESIGN CONSTRAINTS

The payload design had size, shape, weight, and power constraints that also affect the design of the thermal system. The thermal system had to be small enough to fit inside the payload yet still have enough room for the receiving equipment. The amount of power that runs the system either has to be supplied separately from the main system or be low enough that the same power source can be used to power the main equipment and heating system without any negative repercussions. The weight of the heaters had to be miniscule to allow enough weight in the budget to support the payload's structure and receiver equipment. The heaters also have to be able to produce enough heat to actually keep the box from falling below desired internal temperatures. Some of the constraints posed by the project were easily solved, while others took time to get around. All of the constraints had to be addressed if the project was going to work.

6.3 HEATER DESIGN

The first issue addressed during the design was the type of heater that would be used for the project. Two types of heating elements were considered: a polymer coated power resistor that can be custom made to cover the interior walls of the payload and a power resistor. The first resistor considered was suggested by Dr. Chandra. He had personally used this style of resistors for some of his research, and was a favored choice for the project. It solved the spacing and weight constraints that needed to be addressed. Figure 6.1 displays the flat polymer heater.

Figure 6.1: Flat Resistive Heater from Minco

The manufacturer was contacted and it was discovered that the amount of energy that would be needed to drive such a system would be infeasible with our space, weight, and power limitations. The latter heating element was a power resistor. Power resistors were used by some of the team members in the past for a similar project and they worked better than expected on that project. Figure 6.2 displays the power resistor.

Figure 6.2: Wirewound Power Resistor from Radioshack

The payload for this experiment is much larger than any previous payloads built by some of the members, in order to accommodate this four times the amount of heaters will be used. In order to accommodate power usage two sets of 50 ohm power resistors will start at 15°C and cut off at 27°C. Those two sets are called the primary resistor set. The secondary resistor set, with resistances of 12 ohm each, will start at 10°C and cut off at 20°C which reduces the amount of energy that is necessary to the thermal system.

6.4 POWER SUPPLY

The thermal system will be powered by D sized lithium ion batteries that are used for military projects going into the atmosphere. Figure 6.3 displays the military grade D batteries used for the project.

Figure 6.3: LS 33600C Saft D Batteries

The primary system will use 6 of these batteries in series, and the secondary will use 3 series. The secondary system will use fewer batteries since the secondary system is not expected to run as long as the primary system. The primary system however is designed to run for the whole flight time just in case such a scenario was to occur. The power output from these batteries is acquired from Ohm's Law which allows for the life of the batteries to be determined as well. Those equations are displayed in the Appendix F "Battery Life Calculations."

6.5 THERMAL SYSTEM CONTROLLER

A Basic Stamp microcontroller was used as the controller for starting and stopping the thermal system. The Basic Stamp will have an eprom of 16kb, which will store the temperature data that it records during testing and flight, which will further validate the effectiveness of the heating system. Figure 6.4 displays the basic stamp board that will be used to control the system.

Figure 6.4: Basic Stamp Board

The Basic Stamp board will be powered by two 9 volt batteries in parallel, which will be

of the same military quality as the D sized batteries. Figure 6.5 displays 9v batteries.

Figure 6.5: Military Grade 9 Volt Batteries from Saft

6.6 TEMPERATURE SENSORS

Two temperature sensors will be used. In the event that one of the sensors fails, the system can continue to operate. The temperature sensors will be kept in the center of the payload near the receiving equipment. Figure 6.6 displays the temperature sensor used.

Figure 6.6: AD590KF IC thermal sensors

6.7 INSULATION

Due to the constraint on power, space, and weight, the payload needed another way to either conserve or amplify the energy used. Insulation was the lightest, cheapest, and most efficient way to improve the payload's heat retention without adding more heaters or dramatically increasing weight. Expanded Polystyrene was the type of insulation chosen due to its light weight and its thermal resistance. Figure 6.7 displays the payload with the polystyrene insulation arranged around the interior of the box.

Figure 6.7: Payload with Insulation

6.8 SYSTEM PROGRAM DESIGN

With the heating element design finished, the program that will run the system was created. The Basic Stamp program's main objective is to check the temperature reading given from the two temperature sensors in the center of the box and record it every 20 seconds. If the temperature readout from the temperature sensor falls below 15°C it will divert voltage, using a transistor, to the primary heating system until the temperature sensor reaches above 27°C. If the primary heating system cannot keep the boxes temperature from dropping, then the temperature sensor will send a signal to the basic stamp to start the secondary system when the temperature is below 10°C.

The secondary system will shut off at 20°C. This program is written in pbasic and is mirrored from the pbasic code used in the LaACES project two years ago. Basic Stamp code has to also be written to extract the data recorded from the EEprom to a computer. This code was modified from the LaAces project as well. Both of these codes are given in Appendix F.

6. Microwave Radiometer Design

7.1 INTRODUCTION

The project requires a radiometer capable of detecting microwave radiation in the gigahertz frequency range. A radiometer is fundamentally a very sensitive calibrated receiver for measuring electromagnetic noise emitted by the environment. The equipment to be used in the design must conform to size and weight constraints set forth by HASP. The design described below was chosen due to its price and size of equipment.

7.2 DESIGN

The chosen design for the receiver is shown below in Figure 7.1. The schematic was acquired from Millimeter Wave. Millimeter Wave was the chosen company to provide the equipment for the receiver due to the price and experience of staff.

Figure 7-1: Millimeter 55-65 GHz Radiometer Schematic

7.3 EQUIPMENT SPECIFICATIONS

Figure 7-1 gives schematically the layout of the equipment. The equipment used in this design are: Horn Lens Antenna, Low Noise Amplifier, Mixer, Voltage Controlled Oscillator, Multiplier, Band Pass Filter, and Detector. All of the specifications of the equipment listed above are given in Appendix G.

7.3a HORN LENS ANTENNA

The antenna used in this design is a three inch horn lens antenna. It is designed to provide 30 decibels of gain to intensify the signal. The horn design was chosen due to its frequent use in reception of microwave radiation and its affordability.

7.3b LOW NOISE AMPLIFIER

A Low Noise Amplifier (LNA) is implemented immediately after the antenna to reduce noise and amplify the desired signal (55-65GHz). It reduces noise by filtering out frequencies not desired for measurement. The LNA provides an amplification of 25 decibels. It also introduces an amount of noise estimated to be approximately 4.5 decibels.

7.3c MIXER AND BANDPASS FILTER

The mixer is used as a down converter to decrease the intensity of the signal to a frequency that the processing system can handle. The mixer accepts two signals (one from the antenna and the other generated by an oscillator) and as a result gives out two different signals. One of the resulting signals has a frequency that is the sum of the frequencies of the two incoming signals. The other output signal is one with a frequency resulting from the difference of the frequencies of the incoming signals. In our design the difference will result in a signal with a frequency of 1GHz. This is the output signal

desired for this project. To select this signal, the mixer is followed by a bandpass filter designed to only accept a signal with a frequency of 1GHz.

7.3d VOLTAGE CONTROLLED OSCILLATOR

The mixer requires a generated signal in the range of 54 to 64 GHz. To create this signal, the receiver uses a voltage controlled oscillator (VCO). The VCO outputs signals with different frequencies. Since the frequencies of the output signals are smaller than desired, the output from the oscillator is sent to a multiplier to raise the frequencies to the desired range. These signals are then sent to the mixer to be combined with the signal from the antenna.

7.3e OUTPUT

The signal from the mixer is passed through a filter which only allows signals with approximately a 1GHz frequency. This filters out much of the noise introduced from the mixer. The remaining signal is picked up by a tunnel diode detector. The detector then measures the amount of power in the signal.

7. Data Acquisition Design

8.1 INTRODUCTION

From the radiometer, the signal after mixing and amplification will be at an IF frequency of 1 GHz. This frequency is accepted into a detector that will process and convert the signal into peak voltage levels. The signal is then converted into a digital waveform which will be processed and stored by the digital equipment. A flow diagram depicting this process is shown below in Figure 8.1.

Figure 8.1: Process Flow Diagram for Data Acquisition System Also key to the data acquisition system is the Sawtooth Waveform Generator that controls the VCO discussed in the previous section. The SWG helps the voltage level for the VCO and, via the use of a clock and timing circuit, indicates the frequency of the incoming signal.

8.2 EQUIPMENT

The data acquisition system uses six major components to accomplish its task. These components are: Detector, Analog to Digital Converter, Microcontroller, and Data Storage.

8.2a DETECTOR

After the signals are received and filtered from the radiometer, the LTC5507, a temperature-compensated Schottky diode peak detector and buffer amplifier detector, converts the .85 GHz to 1.15 GHz IF frequency to analog peak voltage signals. The LTC5507 integrates several functions to provide RF power detection over frequencies up to 1000MHz. These functions include an internally compensated buffer amplifier, an RF Schottky diode peak detector, and level shift amplifier to convert the RF signal to DC. A delay circuit is included to avoid voltage transients at VOUT when coming out of shutdown. A gain compression circuit is also included to extend the detector dynamic range. An electrical diagram of the detector is shown below in Figure 8.2

Figure 8.2: LTC5507 Schottky Tunnel Diode Detector

The internal RF Schottky diode peak detector and level shift amplifier converts the RF input signal to a low frequency signal. The frequency range of the RF pin is typically up to 1000 MHz. The specified detector has excellent operation over a wide range of input powers. The Schottky detector is biased at about 70mA. The hold capacitor is external for this system.

The gain compression circuit changes the feedback ratio as the RF peakdetected input voltage increases above 60mV. Below 60mV, the DC voltage gain from the peak detector to the buffer output is 4. Above 140mV, the DC voltage gain is reduced to 0.75. The compression expands the low power detector range due to higher

gain. The gain compression circuit is seen schematically below in Figure 8.3.

Figure 8.3: Gain Compression Circuit Schematic

The RF input power (dBm) can be converted into watts by solving for P_1 using P_0 equal to 1mW for reference. This is expressed mathematically via Equation 8.1.

$$L_{\rm dB} = 10\log_{10}\left(\frac{P_1}{P_0}\right)$$

RF Input Power, dBm:

Equation 8.1

From Equation 8.1, the system will be able to receive signal power levels ranging between -34dbm and 14 dbm. This equates to power levels from 4*10⁷ W to .25 W. The voltage output of the system will be determined from Equation 8.2.

Voltage Output from Detector, Volts: $Voltage = \sqrt{Power * 50\Omega}$ Equation 8.2 Using Equation 8.2, the voltage output from the detector is between .0045 V and 1.12 V. Under the given thermal operating conditions, this detector should operate with a high amount of accuracy. Typical detector characteristics can be seen below in Figure 8.4.

Figure 8.4: Typical Detector Characteristics

8.2b A/D CONVERTER

The power levels from the incoming signals into the system will be used to calculate the Power vs. Frequency graph in order to depict a correlation of background radiation at these specified frequencies. Error in the power response at each time interval is minimized by reducing the sampling rate. Data must sampled over two microsecond intervals to have a substantial amount of data for the ranges that are proposed. The data will then be digitized using an 8-bit A/D converter that will be sampled and held at the given rate. A schematic diagram of the A/D converter is given below in Figure 8.5.

Figure 8.5: 8 Bit A/D Converter Schematic Diagram

8.2d MICROCONTROLLER AND DATA STORAGE

All of this data will be recorded and stored onboard by using a memory chip. The data will also be down-linked so real-time operating conditions of the system will be known. The signals from the radiometer will have to be signal conditioned and digitized.

The microprocessor will be used to multiplex the incoming 8-bit signals to designated data storage spaces at a given clock speed. The Rabbit 3000 is used in this application because of its data storage capabilities (20-bit address with 1 Mb of data addressing and a 16-bit data bus) and its acceptable range of environmental operating conditions. The data will be stored on a 1MB EEProm memory chip on the digital processing board interfaced with the Rabbit 3000. Before each read, the program that will run the software will check itself and shut down if there is not enough free space to avoid data overwrite. The Rabbit 3000 can be below in Figure 8.6.

1	RDY/BUSY	V _{cc} 32
	A16	A15
	A14	RES
	A12	WE
	A7	A13
	A6	A8 🗖
	A5	
	A4	A11
	A3 28C010T	
	A2	A10
	A1	려고
	AO	
	1/00	1/06
	1/01	1/05 🗖
	1/02	1/04
16 🖂	Vae	1/03 🔁 17

Figure 8.6: Rabbit 3000 Microcontroller

8.3 SAWTHOOTH VOLTAGE REGULATOR

The processing board will not only control the sampling, data storage, and telemetry of the system, it will also control the Voltage Controlled Oscillator (VCO) that will be used to sweep the range of frequencies. A sawtooth wave generator can be built using a simple 555 timer IC and a transistor as shown in the circuit diagram below in Figure 8.7.

Figure 8-7: Sawtooth Waveform Generator

The SWG can be explained in the following manner. The part of the circuit consisting of the capacitor, transistor, zener diode, and the resistors form a constant current source that charges the capacitor. The voltage across it is zero, causing the internal comparators inside the 555 connected to pin 2 causes to go high and the internal transistor to open. The capacitor starts charging to the supply voltage. As it charges, to a point above two-thirds of the supply voltage, the 555's output goes low

and shorts the capacitor to ground and discharges. Again the 555's output goes high when the voltage across C drops below a third the supply. Hence the capacitor charges and discharges between two-thirds and a third the supply voltage. Note that the output is taken across the capacitor. The 1N4001 diode makes the voltage across the capacitor go to ground level. The frequency of the circuit is given by Equation 8.3. Frequency, Hz: $f = (Vcc-2.7)/(R^*C^*Vpp)$ Equation 8.3

where: Vcc= Supply voltage. Vpp= Peak to peak voltage of the output required.

Choosing the proper R, C, Vpp, and Vcc values will enable the system to get the required frequency. Choosing $f = \frac{V_{cc} - 2.7V}{R \times C \times V_{pp}} = \frac{15^+ - 2.7}{10k\Omega \times 330 \mu F \times 25} = .088485$ Hz.

This means that the period that it goes from origin to peak is 11 seconds. This will enable the SWG to produce a range of 5-10 Volts with an interval of 1 s/V. The SWG is represented using Matlab. The code for the SWG is given in Appendix H. Figure 8.8 shows the output of the SWG.

Figure 8.8: Output from Sawtooth Waveform Generator

This graph displays the discharge peak voltage that the capacitor will perform at and its period of performance. Since the system needed a minimum of 5 Volts and a maximum of 10 Volts for the Sawtooth Generator to operate correctly at a period of 11 seconds, this design reflects the expected projection.

8.4 SYSTEM POWER DESIGN

The EDAC 516 connector supplies the payload with 30 volts DC and 2.5 amps and has the grounding connections for all of the systems. By utilizing correctly sized resistors, the system can have its recommended supply of voltage to each component. The leads of the SWG will give an output between 5 and 10 volts that will control the VCO. Figure 8.9 shows the power supply diagram for the system.

Figure 8-9: Power Supply Diagram

8.5 POST FLIGHT OPERATIONS

After the flight has ended the data will be retrieved via serial port connection and by running a program to print out the stored data onto the debug screen. The data will then be copied into Excel. The data will be in the form of power levels versus time. The Excel program will be used to calculate the power levels from the data and construct the graphs of power versus altitude and the power versus frequency. The Excel program will also contain the frequency/time data of the SWG. The data will be time-stamped using Central Standard Time. The data will be correlated to determine the frequency of the incoming signals as a function of the time and altitude obtained from the HASP GPS.

9. Stress Analysis

9.1 INTRODUCTION

The stress analysis is performed as verification that all designed structures will not fail due to any loads applied to them. The HASP project guidelines dictate that any structure must be able to withstand a 10 g vertical shock as well as two 5 g horizontal shocks. These loads are to be expected whenever the gondola lands. The project has two main structures of interest for analysis: the payload shell and support structure. For the structure to pass the stress analysis, the structure must have a minimum overall safety factor of between 1.15 and 1.25, which is the acceptable range for aerospace applications.

9.2 SOFTWARE

The analysis is performed using the FEA software Algor. Algor takes a CAD model, Inventor in the case of this project, and processes it into three dimensional matrices which can then be combined to determine the maximum stresses given a specified load. Algor requires that the loads, material, size of mesh, and type of mesh be specified before an analysis can be performed. The user defined loads on a part or assembly can take many forms, but this analysis looks at shock loads, which is interpreted by Algor as a static load (i.e. very short duration). Algor also has a very wide selection of materials that can be selected for a part. Selection of a material is important because Algor takes the material properties and uses them to solve the load matrices. Mesh size specifies the size of the load matrix. The smaller the mesh, the larger this matrix becomes and the longer the analysis will take to process. The type of mesh

recommended mesh style for three dimensional objects because it tends to better describe mathematically what the part or assembly is.

9.3 PAYLOAD SHELL ANALYSIS

The payload shell, as described earlier in the payload design section, consists of four 1/8 inch corners with walls with a thickness of .025 inches. The corners are mounted to the mounting plate with four 1x3x1/8 inch brackets. The payload shell is tied together at the top by the top frame with four 1x1x1/8 inch brackets. The top covers this frame and overhangs the sides of the payload. The corners, top frame, and base brackets were specified as Aluminum 5052-H32. The top brackets were specified as Aluminum 6061-T4. The PVC base was specified as fluorinated ethylene propylene. This was because Algor did not have PVC in the material libraries, and FEP was chosen due to its similar strength properties. Before meshing occurred, all bolts and rivets were removed from the assembly. This is because Algor tends not to handle these items very well in the processing (mesh) stage, especially with large models such as this. Also, all of the .025 side panels and top were removed from the model. Originally, these were going to be included in the analysis, but Algor could not process the mesh with these items included in the model, though all of the sides meshed on their own. The top, however, refused to mesh altogether for no apparent reason. Removing these items does not take away from the legitimacy of this analysis, though. The sides and top were not designed to be load bearing; only the corners were designed to withstand the shock that would be experienced upon landing.

The shell was processed to a 67% mesh. This mesh was used because it did not have any water tightness issues (meaning that if you could take the part and fill it with

44

water it would not leak), and it was the convergent mesh for the stress output. The output is given both graphically and in pdf form (this is given in Appendix B). The stress data for the payload shell can be seen graphically below in Figure 9.1.

Figure 9.1: Stress Data for Payload Shell

From the figure, the maximum stress obtained is 24.57 ksi. The maximum stress (and largest stresses for the system in general) occurs on the top frame. This is due to stress risers present from the cutouts made in the frame for the insulation. Also, intuitively, the maximum stress should occur on the top plate because this is where impact load will be resisted. The stresses observed on the top plate would primarily be due to bending resulting from the impact. The maximum stress observed is below the yield strength of the Aluminum Alloy (5052) of 29 ksi. This gives a safety factor of 1.18. This is within the acceptable range of safety for aerospace applications, so the structure passes the stress analysis.

9.4 SUPPORT STRUCTURE ANALYSIS

The support structure, as described earlier in the payload design section, consists of four aluminum 1"x1"x1/8" columns with two platforms. These platforms are secured to the columns by 1" square brackets, or platform tie-ins. These tie-ins are welded to the columns. The columns are specified as Aluminum 6061-T4. The platforms are specified as Aluminum 3003-H14, while the tie-ins are specified as Aluminum 5052-H32. All the bolts of the support structure were removed so Algor could handle the analysis. Unlike the analysis of the Payload Shell, the PVC base was not included. This was because Algor could not process the matrices with it in it. The PVC base has no real load applied, though, as determined by the analysis performed on the Payload shell (.4 psi).

Like the Payload Shell, the mesh that converged and had no water tightness issues was 67%. The output is given both graphically and in pdf form (this is given in Appendix H). The stress data for the payload shell can be seen graphically below in Figure 9.2.

Figure 9.2: Stress Data for Support Structure

From the figure, the maximum stress obtained is 16.8 ksi. The maximum stress (and largest stresses for the system in general) occurs on the first platform around the platform tie-ins. This occurs because upon impact the platforms will experience buckling, especially around the tie-ins. This effect is clearly visible in Figure 9.2 as eddies in the platforms. The maximum stress observed is below the yield strength of the Aluminum Alloy (3003) of 24 ksi. This gives a safety factor of 1.42. This is actually above the acceptable range of safety for aerospace applications, so the structure passes the stress analysis.

10. Vibration Analysis

A major concern for any operation using electrical equipment is vibration. Vibration is highly detrimental because it can induce noise to the system that can wreak havoc on an incoming signal. Vibration can also damage the equipment if the frequencies of oscillation reach the natural frequencies of the equipment or the structure that the equipment is sitting on. Whenever a natural frequency is reached, resonance occurs. Resonance creates large amplitudes of oscillation and, if not quickly passed, will rip structures and equipment apart. Therefore, a vibration analysis is important for two reasons: 1) to determine the noise that will be induced to a system so it can be accounted for and possibly canceled out by prefiltering or 2) to determine the natural frequencies and the frequencies of oscillation to properly design structures and equipment to avoid resonance. The analysis performed here is concerned about the gondola that the balloon payload will sit upon and the support structure that the radiometer and processing equipment will sit upon.

The support structure is analyzed as a two degree of freedom system with base excitation. This base excitation is present from two sources: the oscillation induced by gondola and the wind hitting the sides of the payload. The focus on the analysis for the support structure is on the modes and natural frequencies of the structure. The natural frequencies will be used to check and see if resonance is reached. There will be two natural frequencies because the system has two degrees of freedom because the number of natural frequencies of oscillation is proportional to the degrees of freedom. The modes will show the relationship between the motions of each platform. The structure is made of four aluminum columns with two platforms for electrical equipment

48

to mount to. Each of these columns is analyzed as cantilever beams with an end load applied to determine their respective stiffness as seen in Figure 10.1.

Figure 10.1: System Diagram of Support Structure Depicting Cantilever Assumption These end loads are the platforms and the equipment. As the columns are considered in parallel, their stiffnesses are additive. The MathCAD worksheet, "Frequencies and Modes of The Support Structure," shows this in Appendix I. To determine the modes and frequencies of the support structure, the forcing function (base excitation) need not be known or applied at this time. Performing the analysis requires the differential equations describing the motion of the platforms. These equations are presented in the MathCAD worksheet "Frequencies and Modes of The Support Structure" in Appendix I. The analysis is performed using Matlab. The code takes the combined eigenvector of the mass and stiffness matrices and outputs the displacement and velocity matrices. Using these matrices, the natural frequencies and modes can be extracted. An explanation on how this is done along with a copy of the code (NaturalFrequencies.m) can be found in Appendix I. The results of this analysis are displayed below in Table 10.1.

Table 10.1: Natural Frequencies and Modes for Support					
Structure					
1st Natural Frequency	714.4	rad/s			
2nd Natural Frequency	14,135	rad/s			
	1				
1st Modes	1.004				
	1				
2nd Modes	-1.48				

The first natural frequency is mid range and could pose a problem for resonance. The second natural frequency is high and should never be excited, but both of these will be checked when the analysis is performed for the gondola. The first mode shows that the first platform will move at the same rate as itself and at 1.004 times the rate of the second platform in the same direction. The second mode shows that the second platform will move at the same rate as itself and at -1.48 times the rate of the first platform but in the opposite direction. Both of these solutions are valid and possible, but which of the modes would occur would be unknown until data from the flight were taken and compared.

The gondola is important for the system analysis because it will provide the excitation for the support structure. The gondola is excited by the wind present at the different layers of the atmosphere throughout the flight profile. The wind data is taken from two sources: rocket sounding data taken from the 1960's in California (see Appendix M: Technical Data for the paper detailing this) and from real time wind data taken using lasers in White Sands, NM (also seen in Appendix M). The horizontal wind velocity derived from these data sources is shown below in Figure 10.2.

Figure 10.2: Horizontal Wind Data for HASP Flight Profile

The gondola experiences fluid-induced vibration due to vortex shedding. This analysis is possible because the gondola can be considered a blunt body (cube) present in a flow stream (atmospheric winds). This analysis requires that the mass of the gondola be known as well as the size, moment of inertia, Modulus of Elasticity, hydraulic diameter, and characteristic Strouhal number. Since there is no data given by HASP on the gondola other than the total weight (2000 lb), the actual size of the gondola was assumed to be an four foot cube (validity of this assumption can be checked in NASA's "National Scientific Balloon Facility Recommendations for Gondola Design: April 1, 1986" presented in Appendix M). The gondola is also assumed to be constructed of mostly Aluminum. Both the moment of inertia as well as the hydraulic diameter is easily determined from the assumed dimensions of the gondola. The Strouhal number is a

characteristic quantity that relates the velocity of the flow the frequency of oscillation that is constant for a wide range of flow regimes (i.e. wide range of Reynolds numbers). For a cube, the Strouhal number is given as .143 from Applied Scientific. This analysis will give the natural frequency of the gondola, as well as the velocity required to induce resonance. The actual frequencies of oscillation can also be determined from the analysis. The worksheet "Vibration Analysis of The Gondola for HASP," which details this analysis, can be seen in Appendix I. From the analysis, the natural frequency as well as the exciting velocity can be seen below in Table 10.2.

Table 10.2: Gondola Fluid-Induced Vibration AnalysisNatural Frequency27968.87Excitation Velocity37.95km/s

Notice how high the natural frequency of the gondola is as well as the magnitude of the excitation velocity. The maximum wind reached during the flight is only about 30.8 m/s; therefore, it can be said with very high confidence that resonance will never occur for the gondola. Figure 10.3 displays the frequencies of oscillation for the gondola as well as the payload itself.

Total Flight Time, hours

Figure 10.3: Frequency of Oscillation for Gondola

This figure shows that the maximum amplitude of oscillation is only 22.7 rad/s, well below the natural frequencies of both the gondola and support structure. Vibration is therefore a trivial structural problem for the balloon payload as resonance will never be reached. As for the electronics, the noise induced by vibration of the system is only at maximum 3.6 Hz, well below the range of interest for this experiment (55-65 GHz), so vibration should not be a major component of the total noise.

11. Thermal Simulation

11.1 INTRODUCTION

Understanding how the thermal system acts under flight conditions and environment is pivotal in making a solid design. A flight simulation is used to determine how air property changes affect the payload's temperature and how those same property changes affect the efficiency of the heating system. More detailed information on this simulation is given in "Flight Information" earlier in the report as well as in Appendix B. The main point of this simulation is to determine the center temperature of the payload at any given point so the load on the designed heating system can be verified and proved sufficient. Detailed calculations of the thermal simulation explained within this section are given in Appendix J.

11.2 ASSUMPTIONS

Since the temperature inside the payload is the main point of interest for the simulation, the temperature on the outside of the wall and the temperature of the air must be known. The air temperature is known at all elevations but the outside temperature of the payload is not. Due to crucial information for the project being unknown, assumptions had to be made in order for the simulation to work. A previous balloon project under the auspices of LaACES collected data on air temperature with respect to a payload's wall temperature. That data was made into an equation, and an assumption was made that the same difference in air temperature to outer wall of payload temperature was the same for both projects. The heat transfer rate is considered constant throughout the payload.

11.3 CALCULATIONS

With the information collected, thermal equations can be set up to begin the simulation. To determine the center temperature, the method of nodal analysis was used. Every major surface, except for the base, was selected to be a node, totaling nine. As stated earlier, the heat transfer from each node is assumed to be constant from the air to the inside of the box. The properties of the air were used to determine the heat transfer between the outside of the payload to the outer wall.

11.3a REYNOLDS NUMBER

The Reynolds number is necessary to determine which equation must be used to find the convection coefficient. Equation 11.1 is the Reynolds number.

Reynolds Number:

$$\frac{\operatorname{Re}_{s}(t) \coloneqq \frac{\rho(t) \cdot u_{m}(t) \cdot D_{Hs}}{\mu(t)} \qquad \text{Equation 11.1}$$

A graph of each Reynolds number is displayed in Figure 11.1.

Figure 11.1: Reynolds Number of Each Nine Nodes

11.3b NUSSELT NUMBER

The heat transfer between the outside air and outer wall temperature is used to determine the inner wall temperature at each node. Based off of Figure 11.1, most of the nodes are under laminar flow conditions ($\text{Re} < 5*10^5$) for the entire flight and will use the same equation to determine the convection coefficient. The top, however, experiences turbulent flow conditions ($\text{Re} \ge 5*10^5$) for certain periods of the flight. A logical if statement was made for the Nusselt Number of the top plate to accommodate the changes occurring for the Reynolds number, which is shown in Equation 11. 2.

$$Nu_{T}(t) := \begin{cases} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot r^{3} & \text{if } Re_{T}(t) < 5 \cdot 10^{5} \\ \frac{1}{Re_{T}(t) \cdot Pr^{3}} \cdot \left(.037 \cdot Re_{T}(t)^{-2} - 871 \cdot Re_{T}(t)^{-1} \right) & \text{if } Re_{T}(t) \ge 5 \cdot 10^{5} \end{cases}$$
Equation 11.2

Nusselt Number:

11.3c CONVECTIVE HEAT TRANSFER

The Nusselt Number is necessary to determine the convection heat transfer coefficient coefficient. The convection coefficient is then used to determine the heat transfer rate which is shown in Equation 11.3.

Convective Heat Transfer, W:
$$q_s(t) := -h_s(t) \cdot A_s \cdot (T_w(t) - T_\infty(t))$$
 Equation 11.3

11.3d INNER WALL TEMPERATURE

The heat transfer rate between the outside air and the outside wall of the payload is assumed to be the same between the outside wall and the inside wall. The inside wall temperature is found by using the outside wall temperature, thermal conductivity of the insulation and structure, and the thickness of the insulation and structure. This is done for all nine nodes. Equation 11.4 displays the equation to acquire the inside temperature for the side node.

Inner Wall Temperature, K:
$$T_{iws}(t) \coloneqq -q_s(t) \cdot \left(\frac{th_{sI}}{k_{al} \cdot A_{al}} + \frac{th_{sAl}}{k_p \cdot A_p}\right) + T_w(t)$$
Equation 11.4

Each node should have a different inner wall temperature due to the differences in area and insulation thickness, but should be relatively close to one another. Figure 11.2 displays all the inner wall temperatures from all nine nodes.

Total Flight Time, hours

Figure 11.2: Inner Wall Temperature for Each Node

11.3e CENTER TEMPERATURE PRE-HEATER

Each of the inner wall node temperatures were then added together based on their distance to the center of the payload to determine the payload's center temperature. The nodal analysis equation used is displayed in Equation 11.5.

Nodal Equation, K:
$$T_{c}(t) \coloneqq \frac{x_{1}(t) + x_{2}(t) + x_{3}(t) + x_{4}(t) + x_{5}(t) + x_{6}(t) + x_{7}(t)}{y_{1} + y_{2} + y_{3} + y_{4} + y_{5} + y_{6} + y_{7}}$$
Equation 11.5

The Nodal equation is quite large so variables had to be made for each node's inner wall temperature and distance. These variables are represented in Equation 11.5 as $x_1(t)$, $x_2(t)$, and so on. Since the outer wall temperature was assumed to be the same as another flight project, the outer wall temperature is iterated with the inner wall temperature in order to acquire a new outer wall temperature with increased accuracy. The iteration is shown in Equation 11.6.

$$T_{xws}(t) := \frac{T_{\infty}(t) \cdot h_{s}(t) \cdot A_{s} + \left(\frac{k_{al} \cdot A_{al}}{th_{sI}} + \frac{k_{p} \cdot A_{p}}{th_{sAl}}\right) \cdot \left(T_{iws}(t)\right)}{\left(\frac{k_{al} \cdot A_{al}}{th_{sI}}\right) + \left(\frac{k_{p} \cdot A_{p}}{th_{sAl}}\right) + \left(h_{s}(t) \cdot A_{s}\right)}$$
Equation 11.6

Iterated Outer Wall Temperature, K: (d_{sAl}) (d_{sAl}) (d_{sAl}) Equation 11.6 This new outer wall temperature is used to determine a new heat transfer rate and inner wall temperature. The new inner wall temperature will undergo nodal analysis in order to acquire the center wall temperature. Figure 11.3 compares the original center payload temperature with the center payload temperature acquired through the iteration of the outer wall temperature.

Total Flight Time, hours

Figure 11.3: Comparison of Center Temperatures

11.4 HEATER SIMULATION

The amount of energy that is given off from the power resistors was determined from Ohm's Law. An alternate way to determine how much energy the resistors give off during operation is to find the heat transfer rate of the power resistors from radiation. The radiation heat transfer equations are used due to air low density at higher elevations, which makes convection heat transfer negligible. In order to determine the heat transfer rate from radiation, the shape factor is needed. The shape factor requires the radiosity of each piece of equipment to determine its radiation rate. Equation 11.7 displays radiosity, and Equation 11.8 displays the shape factor equation.

Radiosity, W/m²:
$$J = E_b - \frac{q \cdot (1 - \epsilon)}{\epsilon \cdot A}$$
 Equation 11.7

Shape Factor:
$$F_{12}(t) := \frac{P_s}{A_1 \cdot (J_1 - J_2(t))}$$
 Equation 11.8

The shape factor is then used to determine the heat transfer rate it takes for the thermal system to heat up center of the payload. Equation 11.9 shows this equation.

Heat Transfer Rate for Heaters, W:
$$\frac{\sigma \cdot A_1 \cdot \left(T_1^4 - T_2(t)^4\right)}{\left[\frac{A_1 + A_2 - 2 \cdot A_1 \cdot F_{12}(t)}{A_2 - A_1 \cdot \left(F_{12}(t)\right)^2}\right] + \left(\frac{1}{\epsilon_1} - 1\right) + \left(\frac{1}{\epsilon_2} - 1\right)}$$
Equation 11.9

The heat transfer rate for the heaters is used to determine how long it takes for the system to heat up to the cut off temperature. The heat transfer rate from the heat lost through the system is used to determine how long it takes for the interior of the payload to cool down to the start-up temperature for the heater system. The heater simulation determines the internal temperature of the box when both heaters kick on and off at the same time. The stagger system that the final system will have is not simulated in this simulation due to logistical errors that occur in the simulation. The start-up temperature for the simulated system is 10°C and the cut off temperature is 27°C. Figure 11.4 displays the internal temperature of the payload with the heaters running.

Total Flight Time, hours

Figure 11.4: Internal Temperature with Heaters

11.5 CONCLUSION

As Figure 11.4 shows, the payload's internal temperature is kept within the optimal operating temperature throughout the whole flight. An assumption made during the simulation was that the air velocity is not subject to change during the flight. During a real flight, fluctuations in the winds will occur. To simulate these possible variations, the air velocity is reduced and increased by 25% and the center temperature is recalculated. Figure 11.5 displays the 25% reduced internal wall temperature and Figure 11.6 displays the 25% increased internal wall temperature. Even with these variations, the system still performs to the required specifications. Real-time testing will

still have to be performed to verify the analysis given here. At the time of this writing, the equipment for testing was on order.

Figure 11.5: 25% Wind Reduced Internal Wall Temperature

Total Flight Time, hours

Figure 11.6: 25% Wind Increased Internal Wall Temperature

12. Receiver Simulation

12.1 INTRODUCTION

Simulations are provided to investigate the feasibility and utility of the project's design. MATLAB along with Simulink were used to demonstrate the results from each piece of equipment in the receiver. Using this program, useful predictions can be made regarding the response of the equipment. Shown below in Figure 12.1 is the model created in Simulink for the simulation. The MATLAB code used to create the graphs in this section can be found in the appendix.

Figure 12.1: Simulink Model of Microwave Radiometer

To begin the simulation, a signal was created that appears as white noise. This was created by using the MATLAB random normal number generator (randn). The noise generated appears in the figure below. Figure 12-2 show the input signal as it is measured in temperature (Kelvin). Figure 12-3 shows the input after temperature has been converted to voltage.

Figure 12-2: Radiometer Input Signal

Figure 12-3: Radiometer Input Signal

The graphs below represent the final output from the radiometer. It shows the intensity detected at different frequencies. Figure 12-4 show the detected signal output in Watts. Figure 12-5 shows the output as temperature in Kelvin.

Figure 12-5: Output from Radiometer

The graph below (Figure 12-6) was achieved during the calibration of the equipment. This figure shows that measuring the temperature of the input signal and the signal that enters the detector yields the same result. This is desired to demonstrate that the receiver is not changing the intensity of the signal as it is being filtered.

Figure 12-6: Equipment Calibration

13. Digital Processing Simulation

13.1 INTRODUCTION

The digital processing design was simulated using Simulink. Simulink provides an environment for multi-domain simulation and model-based design for dynamic and embedded systems. It provides an interactive graphical environment and a customizable set of block libraries. One can design, simulate, implement, and test a variety of time-varying systems, including communications, controls, and signal processing.

13.2 SIMULATION

The block diagram in Figure 13.1 shows the simulation based on the detector output of the communication system and the digitizing equipment of the signal. After the signal is detected, it will have noise due to the environment and internal apperturing. As the signal flows it will be amplified and filtered so that the analog to digital converter will have a substantial signal to convert. By using the Fourier Spectrum Scope, we are able to detect the power level at which the incoming signal refers to in this simulation.

Figure 13.1: Block Diagram of Digital Processing System

The noise was calculated to have a power of .05dB and this relates to volatile movement at 120kft and the transformation of the signal from RF to analog before buffering and amplifying. The detector output signal is seen below in Figure 13.2.

Figure 13.2: Detector Output Signal

After the noisy waveform is amplified with a 30dB gain op-amp, the signal to noise ratio is established and calculated to be 29dB. This is seen in Figure 13.3.

Figure 13.3: DC Amplifier Signal Output

The signal is then filtered using a Bandpass Buttersworth 2nd Order Filter. As detailed in the Figure 13.4, involving environmental and internal component factors, there is a significant response to harmonics in the system that relates to distortion in the signal. The average peak is available by further analyzing the power spectrum in this graph.

Figure 13.4 Bandpass Filter Signal

After the signal has been received, amplified, and filtered, the signal can then be sampled and digitized for storage purposes. Each of the different quantized levels refer to a specific discrete value which is then stored to the on-board memory chip in 8-bit binary code. This is seen in Figure 13.5.

Figure 13.5: Digitized Signal from A/D Converter

The Fourier Transform of the incoming processed signals will output the power spectrum over their given sampled frequency. In this simulation, the Fourier Scope gives a -40 dB which equals .0001 W. The detector will be able to operate at that level. This is seen in Figure 13.6

Figure 13.6: Final Power Output

APPENDIX A: Proof of Viability Calculations

1.	/erification of HASP Frequency Ranges7	71	
----	--	----	--

APPENDIX B: Flight Information
1.	HASP Flight Data	76
2.	US Standard Atmosphere 1976 Matlab Program: atmo.m	78
3.	Flight Profile for HASP Flight Based on U.S. Standard Atmosphere, 1976	.82

APPENDIX C: Mechanical Drawings

1.	Parts List	92
2.	Payload Assembly Isometrics	93
3.	Payload Assembly	94
4.	Long End	95
5.	Short End	96
6.	PVC Base	97
7.	Side	
8.	Long Corner Subassembly	99
9.	Long Corner	100
10.	.Base Bracket	101
11.	Short Corner Subassembly	102
12.	Short Corner	103
13.	. Top Subassembly	104
14.	. Top Cover	
15.	.Top Frame	106
16.	. Top Bracket	107.
17.	Insulation Panel Subassembly	108
18.	Long Corner Panel	109
19.	Long Panel	110
20.	Short Corner Panel	111
21.	Short Panel	112
22.	Side Panel 1	113
23.	Side Panel 2	114
24.	.Top Insulating Panel	115
25.	Sensors & Platform Assembly	116
26.	Sensor Platform	117
27.	.Platform	118
28.	Angle Support Column	119
29.	.Platform Tie-ins	120

APPENDIX D: Material Specifications

1.	Aluminum Specifications	122
2.	Gorilla Glue Material Specifications	.127

1. Aluminum Material Specifications

1	ALUMINUM & ST 101 THRU-WAY BROUSSARD, LA Phone: 337 837-4381 Fa M.T.R. COVER \$ 02/19/2003	FAINLESS PARK A 70518 x: 337 837-5439 SHEET 8	
Customer Name : OILQU Address : City, State Zip : Attention : Phone Number : 1 337 Reference Number :	иР 433-3601	Control Number: 501508 Queued By : NORA GATES Page Number : 1 Total Pages : 5 Fax Number : 1 337 439-4808	
	THE INFORMATION YOU REQU THANK YOU FOR YOU	IESTED IS ATTACHED. R BUSINESS !	
HEAT NUMBER	CUSTOMER PO #	PRODUCT	
466738 999771	S81664 S81664	5052S/125/32 3003S/025/14	

460933	All ROLLEC	CAN PROD LUMINU 01 THR ROUSSA 0510 AIN C 4 T-104 00 00D D1 AIS C 000D D1 AIS S 000D D1 AIS S 000 D1 653	UCTS M & UUWAY RD E1180 H32 H32 H32 H32 H32 H32 H32 H32 H32 H32	ALCAN STAINLESS PARK LA 1 4330 1 4330 1 4330 1 4330 1 4330 1 12 EUTOR MILL 1 12 Source 1 12 1 95	INCLUS 102 500 48 162958	TION SER	ALU ALU 101 BRC 705 705 705 705 705 705 705 705 705 705	CE MINUM THRU UUSSAR 10 2008 'AI CAN 'AI CAN '	RTIFIE RAVENS & STAL WAY PAID 000000000000000000000000000000000000	D TEST F with a way a hor initess rk La 1801 PAI CFRTE CATIO ratio henein An CCFRTE CATIO ratio henein An CCFRTE CATIO ratio henein An CAN Rolled Pr undhoan of Sale ation CAN Rolled Pr Undhoan of Sale ation Can Rolled Pr Undhoan of Sale ation	REPOP 154 33E 1 N rdfees that so ad and t the application y warrary to reficiely data s test root sad s test root sad s JUSA	RT DF 2 conta unsta bla 1 ment abat white ex-		
i I	10,	31	10 OF	LUIVAN, 41-4	WITH K SI	¥1.10.99	PACTHINE MAN		-1-2NGA	00H1.	MIN	TMAX	}	
50535/195/37 .1950×48×40	466738	L	2	33.0	33.0	28.7	29	. 0	** 9.5	10.0				
Olean 9944	T T T T T T T T T T T T T T	UL / CTUAL	CHEM	THOU DEPARTMENT	topi>en v day, OSITICN	ALUMANUSE 714 945 7 ALUMAN	MACINESSU PA NA Jun 192 MANY	a Oakii X Mr.	AR RY	209.	19/0-00		demonstration of the first second secon	

02/19/ ITEM	2008 From: ALUMINUM & STAINLESS 1:1 TAG # :	To: OILQUIP NAME :	
PO # B/L #	:S81664 :156110		
B/L #	ALCAN ROLLED PRODUCTS ALUMINUM & STAINLESS 101 THRUWAY PARK 102 TOLING 101 THRUWAY PARK 101 THRUWAY PARK 101 THRUWAY PARK 101 THRUWAY PARK 102 TOLING 102 TOLING 113 - 9944 102 - 102 785 102 - 000 H32 113 - 9944 102 - 102 785 102 - 000 H32 113 - 9944 102 - 102 785 102 - 000 H32 12500 48.0000 96.0000 102 - 001 H32 12500 48.0000 96.0000 102 - 001 H32 102 -	CERTIFIED TEST REPORT HAVENSNOOD WATCHLING UMINUM & STAINLESS 1 THRUMAY PARK OUSSARD LA 510 2 20080206G11801 PAGE 2 OF 2 CRETTRATEN 2 2008000000000000000000000000000000000	
	Interest Interest	RAVENSWOOD, WU 25164 USA <u>AUCONIC 501 Deale Marcel</u> MIN MAX SITION MN= 0.05 MG= 2.66 .15 MAX. AL REMAINDER CEPT IN FULL, WITHOUT THE WRUTTEN ALITY DELEGATE. DULENT STATEMENTS OR ENTRIES ON	
	THE CERTIFICATE MAY BE FUNISHED AS A PELONY CHEMISTRY BY DES: ARKSPAF	UNDER FEDERAL LAW.	
	CHEMISTRIES REPORTED IN PERCENTAGE BY WEIGHT	r.	
	WHEN FRACTURE TOUGHNESS TEST REQUIRED, TESTE NHEN TENSILE TEST PEONTEED TESTED PER ASTM	2D PER ASTM E399.	
l, a	Tensile not tested in accordance with NADCAN	p	
	"END OF CERTIFICATION"		
1	Sec:0.01 BEDN D2PPER VMMSANSO MAXMEDI 901 MAX 001 024 944 MAX 044 MAX 040 MAX	LL1 Σ H27/40 MA F #44 1017/2010 7/2V L210 32/34 4201 1117 F = F 1	
	SEE ACTUAL CHEMICAL COMPOSITION		
ľ	2	N +	

02/19/2008 From: ALUMINUM & STAINLESS To: OILQUIP ITEM #:3 TAG # : NAME : PO # :581664 B/L # :156110 ALCAN rodited Madcap Callen CERTIFIED TEST REPORT ROLLED PRODUCTS ALCAN RAVENGWOOD, WY 26164 LISA RELIANCE - PHOENIX METALS 4685 BUFORD HIGHWAY PHOENIX METALS CO. NORCROSS GA GA 30071 30891 INCLUSION SERIAL #: 20070316025802 PAGE 2 DF 2 PHOENIX 025802 1502 CERTIFICATION 161128 052+620777 WORH LENGTH "ALCAN Rolled Products, hereby cardies that nietal ahbped under this order has been inspected and found in conformance with the resultaments of the applicable specifications as indicated nerth. Any warranty is limited to that shown on ALCAN Rolled Products' standard Gensani Terms and Conditions of Sales. Test reports are on Elle, subject to azamination." CURD. TEMPER DALE 3003 00 H14 .02500 48.000 .000 SPEC COIL NON HT MILL ۰. ALCAN ROLLED PRODUCTS AMS-00-A-250/2 BAL HUWBER P.O. 800 58 DAYE SHIPPED AMARINA B San 025800 03/16/07 WEIGHT SHIPPED NO. DE PATIEN Tab 8,056 ULTWATE STRENG TH K.S.L LOT NUMBER DIRECTION TESTS VIELD STRENGTH K.S. ELONGATION % MIN MAK MIN. MAL MIN. MAN MIN MAX ACTUAL CHEMICAL COMPOSITION 999771 C SI= 0.49 FE= 0.60 CU= 0.11 MN= 1.10 ZN= 0.03 OTHERS-EACH: .05 MAX. OTHERS TOTAL: .15 MAX. AL REMAINDER THIS TEST REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF THE LABORATORY OR AUTHORIZED QUALITY DELEGATE. THE RECORDING OF FALSE, FICTITIOUS, OR FRAUDULENT STATEMENTS OR ENTRIES ON THE CERTIFICATE MAY BE PUNISHED AS A FELONY UNDER FEDERAL LAW. CHEMISTRY BY DES: ARKSPARK CHEMISTRIES REPORTED IN PERCENTAGE BY WEIGHT. WHEN FRACTURE TOUGHNESS TEST REQUIRED, TESTED PER ASTM E399. WHEN TENSILE TEST REQUIRED, TESTED PER ASTH E8; \$557. Tensile not tested in accordance with NADCAP "END OF CERTIFICATION" × . C ALLOY MAN MAX MON MAX MON MAXAMEE MAA M SEE ACTUAL CHEMICAL COMPOSITION SILICON INCN COPPER MADE NUM COROLEUM ZINC TITAN MIPL MAX MAX. MON MAK MIN MAX BACH TOTA COZA ALUMININ ITEMANOR P-860-1550 (1/05) .

2. Gorilla Glue Material Specifications

2. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical name	CAS No.	% content
Urethane prepolymer	trade secret	40-50
Polymeric MDI*	9016-87-9	50-60

*Polymeric MDI is a mixture of 4,4'-Diphenylmethane-diisocyanate, isomers and homologues.

3. HAZARDS IDENTIFICATION

Harmful by inhalation. Irritating to eyes, respiratory system and skin. May cause sensitization by inhalation and skin contact.

4. FIRST AID MEASURES

Inhalation	If aerosol or vapour is inhaled in high concentrations: Move affected individual to fresh air and keep him warm, let him rest. If there is difficulty in breathing; call a doctor.
Eye contact	Flush eyes for at least 10 minutes while holding eyelids open. Contact a doctor.
Skin contact	Remove contaminated clothes immediately, and wash skin with a cleanser based on polyethylene glycol or with plenty of warm water and soap. Consult a doctor in the event of a skin reaction.
Ingestion	Product is not intended to be ingested or eaten. If this product is ingested, severe irritation of the gastrointestinal tract may occur, and should be treated symptomatically. Do not induce the patient or animal to vomit. Call a doctor, ambulance or seek veterinarian assistance immediately.

5. FIRE FIGHTING MEASURES

Upper flammable limit (UFL):	Not determined
Lower flammable limit (LFL):	Not determined
NFPA:	Health – 3, Flammability – I, Reactivity – I
HMIS:	Health – 3, Flammability – I, Reactivity – I

General fire hazards

Down-wind personnel must be evacuated. Do not reseal contaminated containers; a chemical reaction generating carbon dioxide gas pressure may occur resulting in rupture of the container. Dense smoke is emitted when product is burned without sufficient oxygen. When using water spray, boil-over may occur when product temperature reaches the boiling point of water, and the reaction forming carbon dioxide will accelerate. MDI vapour and other gases may be generated by thermal decomposition.

Page I of 4

Special hazards in fire

In case of fire, formation of carbon monoxide, carbon dioxide, nitrogen oxide, isocyanate vapour, and traces of hydrogen cyanide is possible.

Extinguishing Media

Carbon dioxide, dry powder, and foam. In cases of large scale fires, alcohol-resistant foams are preferred. If water is used, it should be used in very large quantities. The reaction between water and isocyanate may be vigorous.

Required special protective equipment for fire-fighters

Fire fighters should wear full-face, self-contained breathing apparatus and impervious protective clothing. Fire fighters should avoid inhaling any combustion products.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

Wear full-protective clothing and respiratory protection as required maintaining exposures during dean-up below the applicable exposure limits.

Environmental precautions

Do not discharge spillage into drains.

Clean-up procedures

Remove mechanically; cover remainders with wet absorbent material (e. g. sand, earth, sawdust). After approx. one hour transfer to waste container and do not seal (evolution of CO₂). Keep damp in a safe ventilated area for several days.

7. HANDLING AND STORAGE

Handling

Avoid contact with skin and eye. Do not smoke, eat and drink at the work-place.

Ventilation: If vapour or mist is generated during processing or use, local exhaust ventilation should be provided to maintain exposures below the applicable limits.

Personal protection: see Section 8.

Storage

Keep product away from sources of alcohols, amines, or other materials that react with isocyanates. Avoid prolonged heating above 160°C/320°F. Store the product in tightly closed containers in a well-ventilated place and in accordance with national regulations. Keep out of reach of children.

8. EXPOSURE CONTROLS/ PERSONAL PROTECTION

For exposure controls see Section 15.

Component exposure limits								
Name	CAS no.	Туре	ppm	mg/m²				
4,4'-Diphenylmethane diisocyanate	101-68-8	OSHA PEL	0.02	0.2				
		acgih (tlv-t	VVA) 0.005					
Personal protection equipment								
General	General Wear suitable protective clothing, protective gloves and protective gogg							
Suitable materials for	Natural rubber/natural latex – NR (>= 0.5 mm)							
safety gloves	Polychloro							
	Nitrile rub							
	Butyl rubber – IIR (>= 0.5 mm)							
	Fluorinated rubber – FKM (>= 0.4 mm)							
					Page 2 of 4			

Personal protection equipment (continued)

Respiratory protection	Required in insufficiently ventilated working areas and during spraying. An air-fed mask, or for short periods of work, a combination of charcoal filter and particulate filter is recommended.
Eyes protection	Chemical goggles or full face shields are recommended. An eyewash fountain and safety shower should be available in the work area. Contact lenses should not be worn when working with this product.
Skin protection	Wear special gloves and working clothes to avoid skin irritation or sensitization. Depending on operation, chemical resistant boots, overshoes, and apron may also be required. Suitable materials for clothing: Polyethylene/ethylene vinyl alcohol laminates (PE/VAL) has been reported as an effective material of construction for chemical protective clothing for MDI.

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical form	Liquid
Color	Dark-Brown
Odor	Earthy, musty
Boiling point	>300°C
Flash point	>250°C
Vapour pressure	<0,00001 mbar at 20° C (diphenyl-methane-diisocyanate)
Specific gravity	Approx. 1,14 g/cm² at 20° C
Viscosity	4,000 – 7,000 mPa.s at 25°C (Brookfield sp. 6/20 rpm)
Solubility in water	reacts
Percent VOC	0%

10. STABILITY AND REACTIVITY

Stability

The product is stable under the recommended handling and storage conditions (see section 7).

Hazardous decomposition products

By exposure to high temperature, hazardous decomposition products may develop, such as isocyanate vapour and mist, carbon dioxide, carbon monoxide, nitrogen oxide, and traces of hydrogen cyanide.

Hazardous reaction

Exothermic reaction with amines and alcohols; reacts with water forming heat, CO_2 , and insoluble polyurea. The combined effect of CO_2 and heat can produce enough pressure to rupture a closed container.

11. TOXICOLOGICAL INFORMATION

Acute Toxicity	LD ₅₀ oral, rat: > 5000 mg/kg
	Skin and mucous membrane compatibility, rabbit: Skin 8 hour's exposure – slight reddening.
	Eyes – moderate reddening and slight swelling.
Inhalation	Over-exposure may cause irritating effects on nose throat and respiratory tract.
Skin contact	Prolonged or repeated contact may result in tanning and irritating effects.
Eye contact	Over-exposure may cause irritating effects on eyes.

Page 3 of 4

12. ECOLOGICAL INFORMATION

Do not allow the product to escape into waters, wastewater or soil.

Biodegradability Acute fish toxicity Toxicity for daphnia Acute bacteria toxicity 0% after 28 days LCO > 1,000 mg/l (96 hrs.) EC 50 > 1,000 mg/l (24 hrs.) EC 50 > 100 mg/l (3 hrs.)

13. DISPOSAL CONSIDERATIONS

The product remnants are classified as chemical waste. Dispose of waste according to Local, State, Federal, and Provincial Environmental Regulations.

14. TRANSPORTATION INFORMATION

This preparation is not classified dangerous according to international transport regulations ADR/RID/IMDG/IATA

Other information: This product is not dangerous cargo. Irritating to skin and mucous membranes. Keep separated from foodstuffs.

15. REGULATION INFORMATION

This product and its components are listed on the TSCA 8(b) inventory.

Symbol

Hazard designation	Xn – Harmful.
Contains	4,4'- Diphenylmethane diisocyanate (MDI), isomere.
R-phrases	R20 – Harmful by inhalation.
	R36/3//38 – Irritating to eyes, respiratory system and skin. R42/43 – May cause sensitization by inhalation and skin contact.
S-phrases	S23 – Do not breathe gas/fumes/vapour/spray.
	\$36/37 – Wear suitable protective clothing and gloves.
	S45 – In case of accident or if you feel unwell, seek medical advice immediately.
	(show the label where possible).

Any existing national regulations on the handling of isocyanates must be observed.

16. OTHER INFORMATION

The information herein is presented in good faith and believed to be accurate as of the effective date given. However, no warranty, expressed or implied, is given. It is the buyer's responsibility to ensure that its activities comply with Federal, State or Provincial, and Local laws.

The Gorilla Glue Company does not test on animals, nor do we require our suppliers to test on animals. Any information provided in this MSDS is based on existing scientific testing of the various raw materials, and is not commissioned by this Company.

Date 01/26/2007

Safety Data Sheet for New Stronger-Faster Gorilla Glue

APPENDIX E: Thermal Design

1.	Battery Life Calculations	132
2.	Heater Control Program	133
3.	Data Retrieval Code	136
4.	Thermal Board Assembly	142

2. Heater Control Program

This program allows the heater system to switch on and off. It is written in pbasic

and used with the Basic Stamp.

' {\$STAMP BS2p} ' {\$PBASIC 2.5} ch0Bits VAR Byte ch1Bits VAR Byte 'Channel addresses for ADC0834 'Each must begin with a '1' bit ch0 CON %1100 ch1 CON %1110 ch2 CON %1101 ch3 CON %1111 Addr VAR Word looop VAR Word ch1Addr VAR Word ch2Addr VAR Word 'The number of bytes each channel will be allocated 'in EEPROM maxMem CON 12000 '3/4 of 16Kbytes of memory sec VAR Byte secR CON \$81 'Command to read from seconds register of RTC secW CON \$80 'Command to write to seconds register of RTC CtrlW CON \$8E 'Command to write to control register of RTC Clear CON \$00 HEAT PIN 0 SDA PIN 8 SDATA PIN 10 SCLK PIN 11 RST PIN 12 ADCIO PIN 13 CLK PIN 14 CS PIN 15 ****** '* Initialization * !***** $\sec = 0$ 'Clear write protect on RTC so that clock can be set 'and clear seconds to 0. 'HIGH RST 'SHIFTOUT SDATA, SCLK, LSBFIRST, [CtrlW, Clear, secW, Clear] 'LOW RST DEBUG CLS HIGH LED1 LOW HEAT FOR looop = 0 TO 19 'loop 360 times PAUSE 20000 'twenty second pause 'end for loop NEXT

FOR Addr = 0 TO maxMem **REVERSE LED1 PAUSE 3886** 'GOSUB Check_Clock 'IF sec.LOWNIB >= 3 THEN ' GOSUB ADC Data ' GOSUB Write Data ' GOSUB Reset_CLock 'END if GOSUB ADC Data GOSUB Write Data GOSUB Display IF ch0Bits <= 127.92 THEN 'Turn on at 127.92~15 C' HIGH HEAT ELSEIF ch0Bits >= 163.93 THEN 'Turn off at 163.93~27 C' LOW HEAT ENDIF NEXT IF ch1Bits <= 85.42 THEN 'Turn on at 85.42~10 C' HIGH HEAT ELSEIF ch1Bits >= 121.43 THEN 'Turn off at 121.43~20 C' LOW HEAT **ENDIF** NEXT DEBUG "Done" END Check Clock: **HIGH RST** SHIFTOUT SDATA, SCLK, LSBFIRST, [secR] SHIFTIN SDATA, SCLK, LSBPRE, [sec] LOW RST ADC Data: **HIGH CS** LOW CS SHIFTOUT ADCIO, CLK, MSBFIRST, [ch0] 'Read Ch0 SHIFTIN ADCIO, CLK, MSBPOST, [ch0Bits] HIGH CS LOW CS SHIFTOUT ADCIO, CLK, MSBFIRST, [ch1] 'Read Ch1 SHIFTIN ADCIO, CLK, MSBPOST, [ch1Bits] **HIGH CS** LOW CS RETURN Write Data: I2COUT SDA, \$A0, Addr.HIGHBYTE \Addr.LOWBYTE, [ch0Bits] PAUSE 5 'Wait for write cycle to complete ch1Addr = Addr + maxMem 'maxMem acts as an offset to the ch1 memory space I2COUT SDA, \$A0, ch1Addr.HIGHBYTE \ch1Addr.LOWBYTE, [ch1Bits] RETURN Reset Clock: **HIGH RST** SHIFTOUT SDATA, SCLK, LSBFIRST, [secW, Clear]

LOW RST RETURN

Display: DEBUG HOME DEBUG "Ch0: ", DEC ch0Bits, CR DEBUG "Ch1: ", DEC ch1Bits, CR DEBUG "Count: ", DEC Addr RETURN

3. Data Retrieval Program

This code shows the data retrieval system used to extract the thermal data on

the EEprom of the Basic Stamp. The code is written in pbasic.

' {\$STAMP BS2p} ' {\$PBASIC 2.5} ' Main Program Variables SECONDS CON \$ MINUTES CON \$ HOURS CON \$ DMONTH CON \$25 MONTH CON \$4 DWEEK CON \$3 YEAR CON \$08 SDA PIN 8 'I2C SDA pin SCL PIN SDA+1 addr VAR Word value VAR Byte result VAR Byte check VAR Word SECOND VAR Byte MINUTE VAR Byte HOUR VAR Byte VAR Byte(3) Delay Time_Elapsed VAR Byte(3) Min Time VAR Byte(3) Max_Time VAR Byte(3) GMtube VAR Byte(2) Sampling_Time CON 20000 'Initiate Variables Delay(0) =Delay(1) = \$0Delay(2) = \$0

```
Time_Elapsed(0) = $16
 Time_Elapsed(1) = 
 Time_Elapsed(2) = $0
 Min_Time(0) = HOURS + Delay(0)
 Min_Time(1) = MINUTES + Delay(1)
 Min_Time(2) = SECONDS + Delay(2)
 Max_Time(0) = Min_Time(0) + Time_Elapsed(0)
 Max_Time(1) = Min_Time(1) + Time_Elapsed(1)
 Max_Time(2) = Min_Time(2) + Time_Elapsed(2)
' Clock Set Up Variables
 C_SEC
        CON 0
 C_MINUTE CON 1
 C_HOUR CON 2
 CONTROL CON 7
 TRICKLE CON 8
 BURST CON 31
rtc PIN 10
 sdat PIN 11
sclk PIN 12
'DATA for SETTING the Real time clock
 DATE TIME DATA SECONDS, MINUTES, HOURS, DMONTH, MONTH, DWEEK, YEAR
  'NOTE DATE_TIME is made of the sec, min, hr, day of month, month, day of week, &
year.
 ADR VAR Byte
 VAL VAR Byte
Set_Real_Time_Clock:
 I OW rtc.
 LOW sclk
 HIGH rtc ' bring /RST high while SCLK is low
 SHIFTOUT sdat, sclk, LSBFIRST, [$80 | (CONTROL<<1) \8]
 SHIFTOUT sdat, sclk, LSBFIRST, [$00\8]
```

LOW rtc ' bring /RST low to terminate

'Now write the date and time, one byte at a time.

FOR ADR=0 TO 6 READ DATE_TIME+ADR, VAL ' fetch value from EEPROM GOSUB _Put_Time NEXT

' set the write protect bit

LOW rtc LOW sclk HIGH rtc ' bring /RST high while SCLK is low

SHIFTOUT sdat, sclk, LSBFIRST, [\$80 | (CONTROL<<1) \8] SHIFTOUT sdat, sclk, LSBFIRST, [\$80\8] '1 in most sign bit

LOW rtc ' bring /RST low to terminate

Public_Main:

DEBUG "Program has begun working.", CR addr = 0 GOSUB_Check_Empty_Slot GOSUB_Check_Min_Time

Main_Loop:

```
GOSUB_Get_N_Save_GM_One
IF (addr<=$0) THEN
END
ENDIF
GOSUB_Get_N_Save_GM_Two
IF (addr<=$0)THEN
END
ENDIF
PAUSE 1000 'wait for a second
```

IF (addr>=\$7fff) THEN 'DEBUG "Program has stopped working." END ENDIF

GOTO Main_Loop

'Now, Retrieve_Time displays the time in HH:MM:SS format Retrieve_Time:

ADR = C_HOUR GOSUB_GET_TIME

HOUR = VAL $ADR = C_MINUTE$ GOSUB_GET_TIME MINUTE = VAL $ADR = C_SEC$ GOSUB_GET_TIME SECOND = VAL RETURN _Put_Time: LOW rtc LOW sclk HIGH rtc 'bring /RST high while SCLK is low SHIFTOUT sdat, sclk, LSBFIRST, [\$80 | (ADR<<1)\8] 'command byte SHIFTOUT sdat, sclk, LSBFIRST, [VAL\8] LOW rtc 'terminate the sequence RETURN _Get_Time: LOW rtc LOW sclk HIGH rtc 'bring /RST high while SCLK is low SHIFTOUT sdat, sclk, LSBFIRST, [\$81 | (ADR<<1)\8] 'command SHIFTIN sdat, sclk, LSBPRE, [VAL\8] LOW rtc

RETURN

_Check_Min_Time:

```
GOSUB Retrieve_Time

IF

((HOUR*3600)+(MINUTE*60)+SECOND)>=((Min_Time(0)*3600)+(Min_Time(1)*60)+Min_Time

(2)) THEN

RETURN

ELSE

GOTO _Check_Min_Time

ENDIF
```

_Check_Empty_Slot:

```
I2CIN SDA, $A1, addr.HIGHBYTE\addr.LOWBYTE, [STR result\1]
 IF (result<=$0) THEN
   'Return
 ELSE
   addr = addr+8
   IF (addr <= $0) THEN
    'DEBUG "Program Stopped"
    END
   ENDIF
   GOTO _Check_Empty_Slot
 ENDIF
 RETURN
_Get_N_Save_GM_One:
 'DEBUG "GM Tube One Sampling", CR
 COUNT 2, Sampling_Time, GMtube(0)
 GOSUB Retrieve_Time
 I2COUT SDA, $A0, addr.HIGHBYTE\addr.LOWBYTE, [HOUR]
 PAUSE 5
 'DEBUG HEX2 HOUR, ":"
 addr = addr+1
 I2COUT SDA, $A0, addr.HIGHBYTE\addr.LOWBYTE, [MINUTE]
 PAUSE 5
 'DEBUG HEX2 MINUTE, ":"
 addr = addr+1
 I2COUT SDA, $A0, addr.HIGHBYTE\addr.LOWBYTE, [SECOND]
 PAUSE 5
 'DEBUG HEX2 SECOND, " "
 addr = addr+1
 I2COUT SDA, $A0, addr.HIGHBYTE\addr.LOWBYTE, [GMtube(0)]
 PAUSE 5
 'DEBUG DEC GMtube(0), " counts for GM Tube #1 ", CR
 addr = addr+1
 RETURN
_Get_N_Save_GM_Two:
 'DEBUG "GM Tube Two Sampling", CR
 COUNT 6, Sampling_Time, GMtube(1)
 GOSUB Retrieve Time
```

I2COUT SDA, \$A0, addr.HIGHBYTE\addr.LOWBYTE, [HOUR] PAUSE 5 'DEBUG HEX2 HOUR, ":" addr = addr+1

```
I2COUT SDA, $A0, addr.HIGHBYTE\addr.LOWBYTE, [MINUTE]
PAUSE 5
'DEBUG HEX2 MINUTE, ":"
addr = addr+1
I2COUT SDA, $A0, addr.HIGHBYTE\addr.LOWBYTE, [SECOND]
PAUSE 5
'DEBUG HEX2 SECOND, " "
addr = addr+1
I2COUT SDA, $A0, addr.HIGHBYTE\addr.LOWBYTE, [GMtube(1)]
PAUSE 5
'DEBUG DEC GMtube(1), " counts for GM Tube #2 ", CR
addr = addr+1
RETURN
```

APPENDIX F: Receiver Equipment

1.	Horns Lens Antenna Schematic	144
2.	Horn Lens Antenna	145
3.	H-Plane Bend	147
4.	Low Noise Amplifier	149
5.	Full Waveguide Band Isolator	.151
6.	Electronically Tuned Gunn Oscillator	.153
7.	Active and Passive Broadband Multiplier	154
8.	Harmonic Mixer	.155
9.	Band Pass Filters	.156

2. Horn Lens Antenna

258 Series

Horn Lens Antennas

Features

- Low Sidelobes
- Wide Bandwidths
- No Aperture Blockage
- Symetrical E and H Plane Beamwidths

Description 258 Series Horn Lens Antennas

mi-Waver 258 series horn lens antenna consists of a circular scalar feel horn illuminating a plano-convex lens. Housed in either aluminum or plastic, these horn lens antennas provide a high efficiency beam with equal E and H plane amplitude patterns.

The 258 series antenna are available from 12.4 to 170 GHz in standard sizes of 3, 6, 9, and 12 inch lens apertures. Other custom sizes and configurations are available, please consult *Mi-Wave* for further information.

Ordering Information

Applications

Radioastronomy Surveillance Equipment Communication Systems

Mi-Wave

Millimeter Wave Products Inc. WWW.miwv.com 2200 Tall Pines Drive, Suite 100 Largo, FL 33771 Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com

Please Note: Final dimensions are subject to variations from the tabulated data due to tuning, focusing, and mechanical tolerances.

Dimensional Specifications

Model No.	Effective	,	<u>,</u>	F	3
	(Inches)	in .	mm	in	mm
258KU	-12	14.0	356	21.0	533
258K	-9	11.0	279	15.7	399
258K	-12	14.0	356	19.5	495
258A	-3	4.1	104	8.30	210
258A	-6	7.6	193	11.1	282
258A	-9	11.0	279	14.0	356
258A	-12	14.0	356	18.2	462
258B, U	-3	4.1	104	8.3	210
258B, U	-6	7.60	193	10.6	269
258B, U	-9	11.0	279	14.0	356
258B, U	-12	14.0	356	17.7	450
258V, E, W	-3	4.2	107	6.0	152
258V, E, W	-6	7.6	193	9.6	244
258V, E, W	-9	11.0	279	13.0	330
258V, E, W	-12	14.0	356	16.7	424

Typical Electrical Specifications

Frequency	12.4 to 140 GHz
Sizes	3, 6, 19, 12
Sidelobes	25dB (typical)
VSWR	1.2:1 (typical)
Cross Polarization	25dB (typical)

Mi-Wave

Millimeter Wave Products, Inc. www.miwv.com Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com

20

3. H-Plane Bend

670, 671, 672, & 675 Series

H-Plane Bends

Features

- Available from 12.4 to 220 GHz
- Additional Radius and Angle Bends by Special Order
- Smooth Precision Bends Minimize Energy Reflections

Description 670, 671, 672 & 675 Series Bends

Mi-Worer 670, 671, 672 and 675 series H-plane bends are sections of high-precision waveguide accurately shaped to either 30° (671), 45° (675), 60° (672), or 90° (670). Special angles, radii, and configurations for particular application can be developed on special order. All H-plane bends are available from 12.4 to 320 GHz.

Applications

The H-plane bends series provide accurate offsets and directional changes in waveguide transmission lines for test and developmental applications. Manufactured to rigid specifications, these transmission line components provide minimum detrimental effects on the overall system VSWR.

Millimeter Wave Products Inc. WWW.miWV.com 2200 Tall Pines Drive, Suite 100 Largo, FL 33771 Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com

123

670, 671, 672, & 675 Series

H-Plane Bends

Dimensional Specifications

Model		A	Weight
Number	in	mm	(oz)
670Ku, 671Ku, 672Ku	1.80	45.7	2.7
670K, 671K, 672K	1.50	38.1	2.7
670A, 671A, 672A	1.50	38.1	2.5
670B, 671B, 672B	1.50	38.1	2.3
670U, 671U, 672U	1.50	38.1	2.2
670V, 671V, 672V	1.00	25.4	1.7
670E, 671E, 672E	1.00	25.4	1.6
670W, 671W, 672W	1.00	25.4	1.5
670F, 671F, 672F	1.00	25.4	1.1
670D, 671D, 672D	1.00	25.4	0.8
670G, 671G, 672G	1.00	25.4	0.8
675Ku	1.80	45.7	2.4
675K	1.50	38.1	2.4
675A	1.50	38.1	2.5
675B	1.50	38.1	2.3
675U	1.50	38.1	2.2
675V	1.00	25.4	1.7
675E	1.00	25.4	1.6
675W	1.00	25.4	1.5
675F	1.00	25.4	1.1
675D	1.00	25.4	0.8
675G	1.00	25.4	0.8

Technical Specifications

Model	Frequency Band BBand	
Number	(GHz)	VSWR
670Ku, 671Ku, 672Ku, 675Ku 665Ku	12.4 - 18.0	1.10
670K, 671K, 672K, 675K	18.0 - 26.5	1.10
670A, 671A, 672A, 675A	26.5 - 40.0	1.10
670B, 671B, 672B, 675B	33.0 - 50.0	1.10
670U, 671U, 672U, 675U	40.0 - 60.0	1.12
670V, 671V, 672V, 675V	50.0 - 75.0	1.12
670E, 671E, 672E, 675E	60.0 - 90.0	1.12
670W, 671W, 672W, 675W	75.0 - 110.0	1.15
670F, 671F, 672F, 675F	90.0 - 140.0	1.15
670D, 671D, 672D, 675D	110.0 - 170.0	1.15
670G, 671G, 672G, 675G	140.0 - 220.0	1.15

Millimeter Wave Products, Inc.

www.miwv.com Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com

124

4. Low Noise Amplifier

955 Series

Description 955 Series Amplifiers

Mi-Wover' 955 series microwave and millimeter wave amplifiers offer a wide variety of frequency ranges, bandwidths, gain and power outputs. Low Noise versions are now available. Frequencies from 2 GHz to 140 GHz. Low cost production designs to meet the demanding needs of communications are also now available. High Power Outputs in the Millimeter Wave Frequencies up to +43 dbm. Please consult Mi-Wave for technical specifications and outline drawings

Amplifiers

Features

- Low Noise
- High Gain
- Full Bandwidths
- High 1 db Comp. Points
- Wide Varity of Frequency Ranges
- 2 GHz to 140 GHz

Ordering Information

Millimeter Wave Products Inc. WWW.MiWV.COM 2200 Tall Pines Drive, Suite 100 Largo, FL 33771 Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com

157

955 Series Amplifiers

Technical Specifications

Frequency Ranges 2 to 140 GHz

Gain 10 to 60 db

Noise Figures 0.6 db

+43 dbm power outputs

Coaxial and waveguide interfaces

1. Please Consult Mi-Wave with your technical requirements.

5. Full Waveguide Band Isolator

115 Series Full Waveguide Band Isolators

Description

115 Series Isolators

mi-Waver^{*} 115 series isolators use the Faraday principle of rotation in a broadband dielectric waveguide design to achieve high isolation across full waveguide bands. These isolators are available in standard waveguide sizes from 18.0 to 110 GHz.

High-quality ferrite material is used in these isolators, and the magnetic field is produced by an integral Alnico V permanent magnet. To ensure maximum reproducibility and performance, a combination of precise machining operations and refined assembly techniques is used.

Applications

Designed for full waveguide band operation, the 115 series isolator is used in swept frequency applications. These components provide a high degree of isolation between signal sources and mismatched loads by attenuating the reflected signals. The insertion loss in the forward direction is minimized to allow for the full available power from the signal source-isolator combination. Typical applications for these broadband isolators include laboratory setups as well as millimeter wave test sets and EW / ELINT hardware.

Operation

Low Insertion Loss Full Waveguide Band

Lightweight and Compact Design Excellent Isolation Across the Band Faraday Rotation Principle of

Ordering Information

WARNING

Features

Sensitive ferromagnetic devices are susceptible to the effects of stray magnetic fields and the presence of other ferrous components. These isolators should be kept at least two inches from all possible sources of interference.

Millimeter Wave Products Inc.

www.miwv.com 2200 Tall Pines Drive, Suite 100 Largo, FL 33771 Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com

1

115 Series Full Waveguide Band Isolators

Technical Specifications

Model Number	115K	115A	115B	115U	115V	115E	115W
Frequency Band (GHz)	18.0-26.5	26.5-40.0	33.0-50.0	40.0-60.0	50.0-75.0	60.0-90.0	75.0-110.0
Isolation (dB) Typ.	25	25	25	25	25	25	25
Insertion Loss (dB) Typ.	1.0	1.0	1.3	1.5	1.6	1.9	2.2
VSWR Max.	1.30	1.30	1.30	1.30	1.35	1.35	1.40
Power Handling (Watts Max.)	2.0	2.0	1.5	1.5	1.0	1.0	1.0
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Waveguide Flange ¹	UG-595/U (54-4-001)	UG-599/U (54-4-003)	UG-383/U (67-2-006)	UG-383/U (67-2-008)	UG-385/U (67-2-008)	UG-387/U (67-2-009)	UG387/U-M (67-2-010)

 Optional flanges are available: UG-381/U (67B-005), Mi-Wave 719, and Mi-Wave 720. Please consult Mi-Wave for further information.

Dimensional Specifications

Model No.		A	1	В
	in	mm	in	mm
115K	4.34	110.2	1.25	31.8
115A	3.38	85.9	1.25	31.8
115B	2.69	68.3	1.25	31.8
115U	2.56	65.2	1.25	31.8
115V	2.56	65.2	0.88	22.2
115E	2.56	64.9	0.88	22.2
115W	2.44	61.9	0.88	22.2

Mi-Wove

Millimeter Wave Products, Inc. www.miwv.com Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com

6. Electronically Tuned Gunn Oscillator

840 Series Electronically Tuned Gunn Oscillators

Features

- Low Noise
- High Reliability
- 12.4 to 110 GHz
- Electronic Tuning

Ordering Information

Description

840 Series Oscillators

Mi-Waver 840 series electronically tuned gunn oscillators have been designed to be used where a frequency agile millimeter source is required. This source can be used as a modulated transmitter or local oscillator. This 840 series gunn oscillator can provide up to 500 MHz of electronic tuning with power outputs of up to 250 milliwatts. Frequency stabilities of 100 KHz/°C can be provided.

Technical Specifications

Model No.	Frequency Band (GHz)	Power Output (up to mw)	Electronic Tuning (MHz)	Mech. Tuning	Freq. Stability MHz / ° C
840Ku	12.4 - 18.0	250	100	250	.30
840K	18.0 - 26.5	250	125	250	.50
840A	26.5 - 40.0	200	140	250	.70
840B	33.0 - 50.0	200	175	300	.90
840U	40.0 - 60.0	150	200	300	1.10
840V	50.0 - 75.0	100	200	400	2.2
840E	60.0 - 90.0	75	225	500	2.6
840W	75.0 - 110.0	50	250	500	3.5

Applications

Radar Swept Sources Telecommunication Systems

Millimeter Wave Products Inc. WWW.INIWV.COM 2200 Tall Pines Drive, Suite 100 Largo, FL 33771 Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com

938 Series Active & Passive Broadband Multipliers

Features

- Operation thru 140 GHz
- X2, X3, X4, X6 Multiplication
- High Efficiency
- 10° Percent to 100 Percent Bandwidth's

Description 938 Series Multipliers

Mi-Waver' 938 series frequency multipliers offer broad-band, high efficiency designs that can be used to generate millimeter wave frequencies from lower frequency microwave sources. The Passive Designs use GaAs varactor diodes mounted on a fin line design provides for minimal circuit losses and optimal harmonic generation. An SMA female input connector is available up to an input frequency of 50 GHz.

X2, X3, and most X4 multipliers use only a single multiplier stage. The 938 series multipliers are designed for input power levels from 30 mW to 100 mW. The multipliers are optimized for specific power levels in this range for an input dynamic range of 3 to 4 dB. These units are used for LO sources, frequency extension of synthesizers, and CW transmitters. Options such as isolators and filters can be supplied for many specialized applications. Please consult *Mi-Wave* for further

Operating Specifications

Input VSWR (Typ.)	2:1
Harmonic Rejection	-20 dBc
Operating Temperature	0 to + 60° C
Storage Temperature	-55° C to + 125° C

Ordering Information

Please be sure to specify:

- Input Power
- Input Flange
- Output Power
- Output Flange

Mi-Wave

Millimeter Wave Products Inc.

www.miwv.com 2200 Tall Pines Drive, Suite 100 Largo, FL 33771 Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com

8. Harmonic Mixer

920 Series

Mi-Waver' 920 series harmonic mixers are used to

downconvert millimeter wave signals using a Schottky barrier mixer diode. Measurements can be

made by mixing the harmonic of the LO with the desired RF signal and observing the resulting IF.

The 920 series is designed for applications where a

Features

- Full Waveguide Band Coverage
- Extends the Useful Frequency . Range of Spectrum Analyzers

Ordering Information

Optional IF amplifiers are available. Please consult Mi-Wore for further information.

Operating Specifications

Diplexer is not required.

RF Input Power	+15 dBm, Max.
LO Input Power	+18 dBm, Max.
Storage Temperature	-55° C to +125° C
Operating Temperature	0° C to +60° C
Bias Requirements:	
Diode	-0.7 Vdc @ 5 mA

Millimeter Wave Products Inc. www.miwv.com 2200 Tall Pines Drive, Suite 100 Largo, FL 33771 Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com
9. Band Pass Filters

460 Series

Band Pass Filters

Features

- Low Cost
- Low VSWR
- Narrow Bandwidths
- High Rejection Levels
- Low in-Band Insertion

Description 460 Series Band Pass Filters

Mi-Wave' 460 series band pass filter is primarily used for narrow band applications. Pass bands are typically from 1% to 4%. This design is well suited for frequency diplexers used in communication systems or any application where narrow bandwidths are required. Insertion losses are typically in the 0.8 dB to 2.0dB area depending upon rejection levels. The 460 series band pass filter can be designed from 12.4 to 60 GHz.

Please consult *Mi-Wore* for further dimensions and specific technical data.

Ordering Information

Applications

Side Band Filters Frequency Diplexers Telecommunications Systems Mi-Wove

Millimeter Wave Products Inc. WWW.miWV.COM 2200 Tall Pines Drive, Suite 100 Largo, FL 33771 Tel. (727) 536-0033 Fax. (727) 536-0012 E: sales@miwv.com

APPENDIX G: Digital Design

1. Sa	wtooth Wavefo	orm Generator Coo	de15	8
-------	---------------	-------------------	------	---

1. Sawtooth Waveform Generator Code

This Matlab code demonstrates the Sawtooth Waveform Generator.

```
t = 0:.01:12:
x=.25;
p=2.5;
w=20;
y = p + w^* sin(x^*t)/pi; % The fundamental frequency
figure(1)
subplot(2,2,1), plot(t,y, 'k')
title('Sawtooth: first harmonic')
xlabel('t (sec)')
ylabel('V (volts)')
axis;
y = p + w^{sin}(x^{t})/pi + w^{sin}(x^{2}t)/(2^{pi});
figure(2)
subplot(2,2,2), plot(t,y, 'k')
title('Sawtooth: first two harmonics')
xlabel('t (sec)')
ylabel('V (volts)')
% The first five harmonics:
y_1 = p + w^* \sin(x^*t) / p_1 + w^* \sin(x^*2^*t) / (2^*p_1) + w^* \sin(x^*3^*t) / (3^*p_1);
y = y1 + w^{sin}(x^{4}t)/(4^{pi}) + w^{sin}(x^{5}t)/(5^{pi});
figure (3)
subplot(2,2,3), plot(t,y, 'k')
title('Sawtooth: first five harmonics')
xlabel('t (sec)')
ylabel('V (volts)')
% The first ten harmonics:
y_1 = p + w^* \sin(x^*t) / p_1 + w^* \sin(x^*2^*t) / (2^*p_1) + w^* \sin(x^*3^*t) / (3^*p_1);
y_2 = y_1 + w^* \sin(x^* 4^* t) / (4^* p_i) + w^* \sin(x^* 5^* t) / (5^* p_i) + w^* \sin(x^* 6^* t) / (6^* p_i);
y_3 = y_2 + w^* \sin(x^*7^*t) / (7^*pi) + w^* \sin(x^*8^*t) / (8^*pi) + w^* \sin(x^*9^*t) / (9^*pi);
y = y3 + w^* \sin(x^* 10^* t) / (10^* pi);
figure(4)
```

```
subplot(2,2,4), plot(t,y, 'k')
title('Sawtooth Waveform Generator')
xlabel('t (sec)')
ylabel('V (volts)')
hold on
r=4
plot(t, r, 'k')
```

%The first fifteen harmonics

```
 y1 = p + w^{sin}(x^{t})/pi + w^{sin}(x^{2}t)/(2^{pi}) + w^{sin}(x^{3}t)/(3^{pi}); 
 y2 = y1 + w^{sin}(x^{4}t)/(4^{pi}) + w^{sin}(x^{5}t)/(5^{pi}) + w^{sin}(x^{6}t)/(6^{pi}); 
 y3 = y2 + w^{sin}(x^{7}t)/(7^{pi}) + w^{sin}(x^{8}t)/(8^{pi}) + w^{sin}(x^{9}t)/(9^{pi}); 
 y4 = y3 + w^{sin}(x^{10}t)/(10^{pi}) + w^{sin}(x^{11}t)/(11^{pi}) + w^{sin}(x^{12}t)/(12^{pi}); 
 y = y4 + w^{sin}(x^{13}t)/(13^{pi}) + w^{sin}(x^{14}t)/(14^{pi}) + w^{sin}(x^{15}t)/(15^{pi}); 
 figure(5)
```

```
subplot(2,2,4), plot(t,y, 'k')
title('Sawtooth Waveform Generator')
xlabel('t (sec)')
ylabel('V (volts)')
hold on
r=4
plot(t, r, 'k')
```

%The first twenty harmonics

 $y1 = p+w^*sin(x^*t)/pi+w^*sin(x^*2^*t)/(2^*pi)+w^*sin(x^*3^*t)/(3^*pi);$ $y2 = y1+w^*sin(x^*4^*t)/(4^*pi)+w^*sin(x^*5^*t)/(5^*pi)+w^*sin(x^*6^*t)/(6^*pi);$ $y3 = y2+w^*sin(x^*7^*t)/(7^*pi)+w^*sin(x^*8^*t)/(8^*pi)+w^*sin(x^*9^*t)/(9^*pi);$ $y4 = y3+w^*sin(x^*10^*t)/(10^*pi)+w^*sin(x^*11^*t)/(11^*pi)+w^*sin(x^*12^*t)/(12^*pi);$ $y5 = y4+w^*sin(x^*13^*t)/(13^*pi)+w^*sin(x^*14^*t)/(14^*pi)+w^*sin(x^*15^*t)/(15^*pi);$ $y6 = y5+w^*sin(x^*16^*t)/(16^*pi)+w^*sin(x^*17^*t)/(17^*pi)+w^*sin(x^*18^*t)/(18^*pi);$ $y = y6+w^*sin(x^*19^*t)/(19^*pi)+w^*sin(x^*20^*t)/(20^*pi);$ figure(6)

```
subplot(2,2,4), plot(t,y, 'k')
title('Sawtooth Waveform Generator')
xlabel('t (sec)')
ylabel('V (volts)')
hold on
r=4
plot(t, r, 'k')
```

APPENDIX H: Stress Analysis

1.	Payload Shell Stress Output	161
2.	Support Structure Stress Output	183

1. Payload Shell Stress Analysis

ALGOR HTML Reporting

ī⊳č

.

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents.

Design Analysis

Project reviewed on 4/24/2008.

.

Summary

Model Information

Analysis Type - Static Stress with Linear Material Models Units - English (in) - (lbf, in, s, deg F, deg F, V, ohm, A, in*lbf) Model location - C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematics\MRE II Payload Updated 2-15\Payload Shell\Large Assemblies\Payload Assembly w-o Sensors v2.fem Design scenario description -

Analysis Parameters Information

Load Case Multipliers

Static Stress with Linear Material Models may have multiple load cases. This allows a model to be analyzed with multiple loads while solving the equations a single time. The following is a list of load case multipliers that were analyzed with this model.

Load Case	Pressure/Surface Forces	Acceleration/Gravity	Displaced Boundary	Thermal	Voltage
1	1	1	0	0	0

Gravity Information

The following lists the values used if acceleration or gravity was included in the analysis. The Acceleration/Gravity direction multiplier is multiplied by the Acceleration Due To Body Force which is then multiplied by the Acceleration/Gravity load case multiplier.

Acceleration Due To Body Force = 386.4 in/sÅ²

Acceleration/Gravity X Multiplier	Acceleration/Gravity Y Multiplier	Acceleration/Gravity Z Multiplier
5	5	10

Multiphysics Information

Default Nodal Temperature	0 ŰF
Source of Nodal Temperature	None
Time step from Heat Transfer Analysis	Last

Processor Information

Type of Solver	Sparse
Disable Calculation and Output of Strains	No
Calculate Reaction Forces	Yes
Invoke Banded Solver	Yes
Avoid Bandwidth Minimization	No
Stop After Stiffness Calculations	No
Displacement Data in Output File	No
Stress Data in Output File	Yes
Equation Numbers Data in Output File	No
Element Input Data in Output File	No
Nodal Input Data in Output File	No
Centrifugal Load Data in Output File	No

Part Information

Part ID	Part Name	Element Type	Material Name
1	PVC Base:2	Brick	Plastic- FEP (Molded/Extruded)
2	Long Corner:1	Brick	Aluminum 5052-H32
3	Base Bracket:1	Brick	Aluminum 5052-H32
<u>4</u>	Long Corner:1	Brick	Aluminum 5052-H32
5	Base Bracket:1	Brick	Aluminum 5052-H32
<u>6</u>	Short Corner:1	Brick	Aluminum 5052-H32
<u>Z</u>	Base Bracket:1	Brick	Aluminum 5052-H32
<u>8</u>	Short Corner:1	Brick	Aluminum 5052-H32
<u>9</u>	Base Bracket:1	Brick	Aluminum 5052-H32
10	Top Bracket:1	Brick	Aluminum 6061-T4; 6061-T451
11	Top Bracket:3	Brick	Aluminum 6061-T4; 6061-T451
12	Top Bracket:4	Brick	Aluminum 6061-T4; 6061-T451
13	Top Bracket:5	Brick	Aluminum 6061-T4; 6061-T451
14	Top Frame:1	Brick	Aluminum 5052-H32

4/24/2008 4:09 PM

Element Properties used for:

- PVC Base:2
 Long Corner:1
 Base Bracket:1
 Long Corner:1
 Base Bracket:1
 Short Corner:1
 Base Bracket:1
 Short Corner:1
 Base Bracket:1
 Top Bracket:3
 Top Bracket:3
 Top Bracket:5
 Top Frame:1

Element Type	Brick
Compatibility	Not Enforced
Integration Order	2nd Order
Stress Free Reference Temperature	0 ŰF

Material Information

Plastic- FEP (Molded/Extruded) -Brick

Material Model	Standard
Material Source	ALGOR Material Library
Material Source File	C:\Program Files\ALGOR\20.02\matlibs\algormat.mlb
Date Last Updated	2004/09/30-16:00:00
Material Description	Fluorinated Ethylene Propylene
Mass Density	.201e-3 lbf*s^2/in/inÅ ²
Modulus of Elasticity	70000 lbf/inÅ2
Poisson's Ratio	.48
Shear Modulus of Elasticity	23649 lbf/inÅ2
Thermal Coefficient of Expansion	5.22e-5 1/ŰF

Aluminum 5052-H32 -Brick

Material Model	Standard
Material Source	ALGOR Material Library
Material Source File	C:\Program Files\ALGOR\20.02\matlibs\algormat.mlb
Date Last Updated	2004/10/28-16:02:00
Material Description	None
Mass Density	0.00025078 lbf*s^2/in/inÅ ²
Modulus of Elasticity	10196000 lbf/inÅ ²
Poisson's Ratio	0.33
Shear Modulus of Elasticity	3756500 lbf/inÂ2
Thermal Coefficient of Expansion	0.000013222 1/ŰF

Aluminum 6061-T4; 6061-T451 -Brick

Material Model	Standard
Material Source	ALGOR Material Library
Material Source File	C:\Program Files\ALGOR\20.02\matlibs\algormat.mlb
Date Last Updated	2004/10/28-16:02:00
Material Description	None
Mass Density	0.00025265 lbf*s^2/ln/inÅ3
Mass Density Modulus of Elasticity	0.00025265 lbf*s^2/in/inÅ* 9993200 lbf/inÅ*
Mass Density Modulus of Elasticity Poisson's Ratio	0.00025265 lbf*s^2/in/inŲ 9993200 lbf/inŲ 0.33

4/24/2008 4:09 PM

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents...

Shear Modulus of Elasticity	3771000 lbf/inÅ2
Thermal Coefficient of Expansion	0.000013111 1/ŰF

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents.

Processor Output

Processor Summary

ALGOR (R) Static Stress with Linear Material Models Version 20.01.00.0024-MIN 26-APR-2007 Copyright (c) 2007, ALGOR, Inc. All rights reserved. **** Nemory Dynamically Allocated = 1024066 KB (requested 1257288 KB) DATE: MARCH 12, 2008 TIME: 05:18 PM INPUT MODEL: C:\Documents and Settings\Raymond\My Documents\Ny Docs\Capstone\Drawings & Schematics\MRE II Pay. PROGRAM VERSION: 2001000024 ALCONDANCE VERSION: 2001000024 algedb ar.dll VERSION: 200210036 algeobar.dll VERSION: 2002000064 algeolwe.exe VERSION: 2000000663 amgeolwe.exe VERSION: 33000000 Structural 1**** CONTROL INFORMATION (NUMNP) = (NELTYP) = (LL) = number of node points 99646 number of element types number of load cases 14 (LL) (NF) number of frequencies analysis type code (NDYN) -0 (KBQB) = 0 (KINBBD) = 0 (GRAV) = 3.8640E+02 (NBQ) = 298938 equations per block bendwidth minimization flag gravitational constant number of equations **** PRINT OF NODAL DATA SUPPRESSED **** PRINT OF EQUATION NUMBERS SUPPRESSED **** Mard disk file size information for processor: Available hard disk space on current drive = 80105.953 megabytes Gravity direction vector = 5.0000E+00 5.0000E+00 1.0000E+01 1**** ELEMENT LOAD MULTIPLIERS case E load case case A case B case C case D 1 1.000E+00 1.000E+00 0.000E+00 0.000E+00 0.000E+00 **** Invoking Parallel BCSLIB-EXT Sparse Solver ... **** Symbolic Azzembling Using the Rom-Hits Matrix Profile ... **** Azzembled in One Block. **** Real Sparse Matrix Azzembly ... 1**** STIFFNESS MATRIX PARAMETERS ninimum non-zero diagonal element = naximum diagonal element = naximum/minimum = 1.0174E+03 7.1114E+07 6.9895E+04 average diagonal element 8.5173E+05 in the upper off-diagonal matrix: in the upper off=diagonal matrix: number of entries in the profile = 33968940 number of symbolic nonzero entries = 8231046 number of real nonzero entries = 8231042 **** Sparse Matrix Assembled in One Block **** Load case 1 **** **** 60.8% of available memory is allocated for the sparse solver memory required for the in-core solving: 861996 kbs memory required for the cut-of-core solving: 126912 kbs memory currently allocated: **** End Sparse Solver Solution 611970 kba Reaction Sums and Maxima for Load Case 1 Sum of applied forces X=Force Y=Force Z=Force X=Moment Y=Moment Z=Moment 4.4210E+01 4.4210E+01 8.8419E+01 0.0000E+00 0.0000E+00 0.0000E+00

8 of 22503

Weight and Center of Gravity Analysis

The weight and center of gravity analysis output file (C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematics\MRE II Payload Updated 2-15\Payload Shell\Large Assemblies\Payload Assembly w-o Sensors v2.ds_data\1\ds.WCG) was not found.

Meshing Results

Part 1 < PVC Base:2>

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	26255

Solid Mesh Statistics

Mesh type	Mix of bricks, wedges, pyramids and tetrahedra
Watertight	Yes
Mesh has microholes	No
Total nodes	52811
Volume	59.073587 in^3
Total elements	80860

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	36167	20251	2125	22317
Volume %	12.42	15.08	2.42	70.09
Max. length ratio	169.9	33.1	8.8	16.9
Avg. length ratio	4.1	3.1	2.5	2
Avg. aspect ratio	1.2	1.3	1.1	1
Unconstrained aspect ratio	3.8	3.5	1.6	1.5

Log File

SOLID MESS GENERATION REFORE ANALYSIS

PROGRAM WILL USE THE FOLLOWING FILES:

Input: C:\Documents and Settings\Reymond\My Documents\My Docs\Capstome\Drawings & Schematics\MKE II Fmyload Updated 2-15\Pmyload Shell\Large Assemblies' Dutput: C:\Documents and Settings\Reymond\My Documents\My Docs\Capstome\Drawings & Schematics\MKE II Fmyload Updated 2-15\Pmyload Shell\Large Assemblies'

COMMAND LINE:

C:\Program Files\ALGGK\20.02\SolidE.exe -b=0 -o=1 -m=2 C:\Documents and Settings\Kaymond\My Documents\My Docs\Capstone\Drawings a Schematics\NKE II Fayl

TYPE OF OPERATION:

Meehing only surface defined by part 1 Generating bricks, wedges, pyramids and tetrahedra elements Antomatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Hiements built (4,5,6,0 moded): 00060 (36167, 20251, 2125, 22317)
Volume (4,5,6,0 moded %): 59.073507 (12.42, 15.00, 2.42, 70.09)
Number of modes: 52011
Length ratios (awg) 4.1, 3.1, 2.5, 2.0
Length ratios (max) 169.9, 33.1, 0.0, 16.9
Aspect ratio: unconstrained (3.0, 3.5, 1.6, 1.5)

22489 of 22503

Weight and Center of Gravity Analysis

The weight and center of gravity analysis output file (C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematics\MRE II Payload Updated 2-15\Payload Shell\Large Assemblies\Payload Assembly w-o Sensors v2.ds_data\1\ds.WCG) was not found.

Meshing Results

Part 1 < PVC Base:2>

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	26255

Solid Mesh Statistics

Mesh type	Mix of bricks, wedges, pyramids and tetrahedra		
Watertight	Yes		
Mesh has microholes	No		
Total nodes	52811		
Volume	59.073587 in^3		
Total elements	80860		

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	36167	20251	2125	22317
Volume %	12.42	15.08	2.42	70.09
Max. length ratio	169.9	33.1	8.8	16.9
Avg. length ratio	4.1	3.1	2.5	2
Avg. aspect ratio	1.2	1.3	1.1	1
Unconstrained aspect ratio	3.8	3.5	1.6	1.5

Log File

SOLID MESE GENERATION REFORE ANALYSIS

PROSERN WILL USE THE FOLLOWING FILES:

Imput: C:\Documents and Settings\Kaymond\My Documents\My Docs\Capstone\Drawings & Schematics\WRE II Fayload Updated 2-15\Payload Shell\Large Assemblies\ Output: C:\Documents and Settings\Kaymond\My Documents\My Docs\Capstone\Drawings & Schematics\WRE II Fayload Updated 2-15\Payload Shell\Large Assemblies\

COMMAND LINE:

C1\Program Files\ALGGK\20.02\SolidK.exe -b=0 -o=1 -me=2 C1\Bocuments and Settings\Raymond\My Documents\My Docs\Capstone\Drawings a Schematics\M&E II Fmy1

TYPE OF OPERATION:

Meshing only surface defined by part 1 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Klessents built (4,5,6,0 moded): 00000 (36167, 20251, 2125, 22317)
Volume (4,5,6,0 moded %): 59.073507 (12.42, 15.00, 2.42, 70.09)
Number of modes: 52011
Length ratios (swy) 4.1, 3.1, 2.5, 2.0
Length ratios (max) 169.9, 23.1, 0.0, 16.9
Appet ratio: unconstrained (2.0, 3.5, 1.6, 1.5)

22480 of 22503

4/24/2008 4-15 DM

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents.

Average aspect ratios: (1.2, 1.3, 1.1, 1.0) Total used memory: 117.92 MB Humber of restarts: 0 Higsed time: 2 minutes 23 seconds Part 2 <Long Corner:1>

Status: the part successfully meshed.

Surface Mesh Statistics

	Mesh operation	Solid mesh
	Final mesh size	0.129125 in
	Elements created	10165

Solid Mesh Statistics

Mesh type	Mix of bricks, wedges, pyramids and tetrahedra	
Watertight	Yes	
Mesh has microholes	No	
Total nodes	12606	
Volume	8.9959 in^3	
Total elements	10252	

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	4037	1799	548	3868
Volume %	3.71	4.92	3.72	87.65
Max. length ratio	108	13.2	3.3	3.6
Avg. length ratio	5.7	3.9	2.1	1.2
Avg. aspect ratio	1.3	1.4	1.1	1
Unconstrained aspect ratio	3.8	3.7	1.2	1.1

Log File

GENERATING SOLID MESH FOR ANOTHER PART

.

PROSERN WILL USE THE FOLLOWING FILES:

Input: C:\Documents and Settings\Rwymond\Wy Documents\Wy Docs\Capstone\Drawings a Schematics\DWK II Payload Updated 2-15\Payload Shell\Large Assemblies' Output: C:\Documents and Settings\Rwymond\Wy Documents\Wy Docs\Capstone\Drawings a Schematics\DWK II Payload Updated 2-15\Payload Shell\Large Assemblies'

COMMAND LINE:

C:\Program Files\ALGGR\20.02\SolidE.exe -b=0 -o=1 -zw=2 C:\Documents and Settings\Raymond\Wy Documents\Wy Docs\Capstone\Drawings & Schematics\NRE II Pay!

TYPE OF OPERATION:

Meshing only surface defined by part 2 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

```
Hiements built (4,5,6,0 noded): 10252 ( 4037, 1799, 540, 3860 )
Volume (4,5,6,0 noded %): 0.995900 ( 3.71, 4.92, 3.72, 07.65 )
Humber of nodes: 12606
Length ratios (arg) 5.7, 3.9, 2.1, 1.2
Length ratios (nax) 100.0, 13.2, 3.3, 3.6
Aspect ratio: unconstrained ( 3.0, 3.7, 1.2, 1.1 )
Average aspect ratios: ( 1.3, 1.4, 1.1, 1.0 )
Yotal used memory: 50.09 M8
```

22490 of 22503

Number of restarts: 0 Riapeed time: 0 minutes 27 seconds Part 3 <Base Bracket:1>

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	538

Solid Mesh Statistics

Mesh type	Mix of bricks, wedges, pyramids and tetrahedra
Watertight	Yes
Mesh has microholes	No
Total nodes	579
Volume	0.45604 in^3
Total elements	241

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	6	11	11	213
Volume %	0.16	0.9	2.47	96.47
Max. length ratio	10.5	4.5	1.7	3.2
Avg. length ratio	5.1	2.7	1.3	1.2
Avg. aspect ratio	1.3	1.3	1.1	1
Unconstrained aspect ratio	1.5	1.6	1.1	1.1

Log File

GENERATING SOLID MESH FOR ANOTHER PART

PROSERN WILL USE THE FOLLOWING FILES:

Input: Ci/Bocuments and Settings/Raymond/My Documents/My Docs/Capstone/Drawings & Schematics/MRE II Payload Updated 2-15/Payload Shell/Large Assemblies' Output: Ci/Bocuments and Settings/Raymond/My Documents/My Docs/Capstone/Drawings & Schematics/MRE II Payload Updated 2-15/Payload Shell/Large Assemblies'

COMMAND LINE:

C:\Program Files\ALGGR\20.02\Solidf.exe -b=0 -o=1 -gam2 C:\Documents and Settings\Raymond\Wy Documents\Wy Bocs\Capstome\Drawings & Schematics\WWE II Fay:

TYPE OF OPERATION:

Meshing only surface defined by part 3 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

```
#lements built (4, 5, 6, 0 noded): 241 ( 6, 11, 11, 212 )
Volume (4, 5, 6, 0 noded %): 0.456040 ( 0.16, 0.90, 2.47, 96.47 )
Number of nodes: 579
Length ratios (avg) 5.1, 2.7, 1.2, 1.2
Length ratios (max) 10.5, 4.5, 1.7, 3.2
Aspect ratios: unconstrained ( 1.5, 1.6, 1.1, 1.1 )
Average aspect ratios: ( 1.2, 1.3, 1.1, 1.0 )
Total used memory: 12.26 MB
Number of restarts: 0
Klapsed time: 0 minutes 1 seconds
```

2491 of 22503

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents.

Surface Mesh Statistics

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	538

Solid Mesh Statistics

Mesh type	Mix of bricks, wedges, pyramids and tetrahedra
Watertight	Yes
Mesh has microholes	No
Total nodes	589
Volume	0.45604 in^3
Total elements	241

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	6	11	11	213
Volume %	0.16	0.9	2.47	96.47
Max. length ratio	10.5	4.5	1.7	3.2
Avg. length ratio	5.1	2.7	1.3	1.2
Avg. aspect ratio	1.3	1.3	1.1	1
Unconstrained aspect ratio	1.5	1.6	1.1	1.1

Log File

GENERATING SOLID MESH FOR ANOTHER PART

PROSEAN WILL USE THE FOLLOWING FILES:

Input: C:\Documents and Settings\Reymond\My Documents\My Bocs\Capstoms\Drawings & Schematics\DRW II Payload Updated 2-15\Payload Shell\Large Assemblies' Cutput: C:\Documents and Settings\Reymond\My Documents\My Bocs\Capstoms\Drawings & Schematics\DRW II Payload Updated 2-15\Payload Shell\Large Assemblies'

COMMAND LINE:

C:\Program Files\ALGGR\20.02\SolidX.exe -b=0 -o=1 -zw=2 C:\Documents and Settings\Raymond\My Documents\My Docs\Capatons\Drawings & Schematics\DRE II Fayl

TYPE OF OPERATION:

Meehing only surface defined by part 5 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Elements built (4,5,6,)	noded);	241 (6,	11, 11, 2	13)	
Volume (4,5,6,8 moded)	k): 0.4540	HO (0.	16, 0.90	2.47,	96.47]
Number of nodes: 589					
Length ratios (avg)	5.1,	2.7,	1.3,	1.2	
Length ratios (max)	10.5,	4.5,	1.7,	3.2	
Aspect ratio: unconstru	ained (1.5, 1.	€, 1.1,	1.1)	
Average aspect ratios:		1.3, 1.	3, 1.1,	1.0)	
Total used memory: 1:	2.31 MB				
Number of restarts:	0				
Elapsed time: 0 minutes	s 2 second	la la			
Part 6 <short corner:1=""></short>					

Status: the part successfully meshed.

Surface Mesh Statistics

22493 of 22503

4/24/2008 4·15 PN

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents...

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	9229

Solid Mesh Statistics

Mesh type	Mix of bricks, wedges, pyramids and tetrahedra
Watertight	Yes
Mesh has microholes	No
Total nodes	11374
Volume	7.929715 in^3
Total elements	9052

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	3370	1656	601	3425
Volume %	3.55	4.86	4.76	86.83
Max. length ratio	99.5	25.1	3.3	3.3
Avg. length ratio	5.3	3.8	2	1.2
Avg. aspect ratio	1.3	1.3	1.1	1
Unconstrained aspect ratio	3.9	3.6	1.2	1.1

Log File

GENERATING SOLID MESH FOR ANOTHER PART

PROGRAM WILL USE THE FOLLOWING FILES:

Input: C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematics\MKE II Payload Updated 2-15\Payload Shell\Large Assemblies' Output: C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematics\MKE II Payload Updated 2-15\Payload Shell\Large Assemblies'

COMMAND LINE:

C:\Frogram Files\ALSGR\20.02\SolidX.exe -b=0 -o=1 -gw=2 C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematics\MKE II Fmy!

TYPE OF OPERATION:

Meehing only surface defined by part 6 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Elements b	uilt (4,5,6,)	8 noded);	9052	(3370,	1656, 6	01, 3425	5	
Volume (4,	5,6,8 moded	NI: 7.929	715 (3.55,	4.86,	4.76,	86.83)
Number of	nodes: 11374							
Length rat	ios (ang)	5.3,	3.0,	2.0,	1.	2		
Length rat	ios (max)	99.5,	25.1,	3.3	э.	з		
Aspect rat	io: unconstru	ained (3.9,	3.6,	1.2,	1.1)		
Average as	pect ratios:	6	1.3,	1.3,	1.1,	1.0)		
Total used	menozy: 4	7.20 MB						
Number of	restarts:	0						
Elapsed ti	me: O minute	s 25 seco	ada					
Part 7 <base< td=""><td>Bracket:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></base<>	Bracket:1>							

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation

Solid mesh

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents...

Final mesh size	0.129125 in
Elements created	538

Solid Mesh Statistics

Nesh type	Mix of bricks, wedges, pyramids and tetrahedra
Watertight	Yes
Mesh has microholes	No
Total nodes	590
Volume	0.45604 in^3
Total elements	241

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	6	11	11	213
Volume %	0.16	0.9	2.47	96.47
Max. length ratio	10.5	4.5	1.7	3.2
Avg. length ratio	5.1	2.7	1.3	1.2
Avg. aspect ratio	1.3	1.3	1.1	1
Unconstrained aspect ratio	1.5	1.6	1.1	1.1

Log File

GENERATING SOLID MESH FOR ANOTHER PART

PROSBAN WILL USE THE FOLLOWING FILES:

Imput: C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Domsings & Schematics\0068 II Payload Updated 2-15\Payload Shell\Large Assemblies' Subput: C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Domsings & Schematics\0068 II Payload Updated 2-15\Payload Shell\Large Assemblies'

COMMAND LINE:

C:\Program Files\Al6GN/20.02\SolidE.exe -b=0 -o=1 -zw=2 C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematics\MKE II Fayl

TYPE OF OPERATION:

Meshing only surface defined by part 7 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Elements built (4,5,6,6	noded);	241 (6, 11, i	11, 213	3	
Volume (4,5,6,8 moded 8	(): 0.450	040 (0.16,	0.90,	2.47,	96.47]
Number of nodes: 590						
Length ratios (avg)	5.1,	2.7,	1.3,	1.	2	
Length ratios (max)	10.5,	4.5,	1.7,	э.	2	
Aspect ratio: unconstru	ined (1.5,	1.6,	1.1,	1.1)	
Average aspect ratios:	6	1.3,	1.3,	1.1,	1.0)	
Total used memory: 12	2.34 MB					
Number of restarts: ()					
Slapsed time: 0 minutes	2 second	ta .				

Part 8 <Short Corner:1>

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation

Final mesh size

Solid mesh 0.129125 in

2495 of 22503

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents...

Elements created

9229

Solid Mesh Statistics

Mesh type	Mix of bricks, wedges, pyramids and tetrahedra
Watertight	Yes
Mesh has microholes	No
Total nodes	11407
Volume	7.929715 in^3
Total elements	9139

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	3451	1658	612	3418
Volume %	3.6	4.85	4.86	86.7
Max. length ratio	99.5	25.1	3.3	3.3
Avg. length ratio	5.3	3.8	2	1.2
Avg. aspect ratio	1.3	1.4	1.1	1
Unconstrained aspect ratio	3.9	3.7	1.2	1.1

Log File

GENERATING SOLID MESH FOR ANOTHER PART

PROGRAM WILL USE THE FOLLOWING FILES:

Input: C:\Documents and Settings\Raymond\My Documents\My Docs\Capstome\Drawings & Schematics\DRE II Fmyload Updated 2-15\Pmyload Shell\Large Assemblies\ Output: C:\Documents and Settings\Raymond\My Docs\Capstome\Drawings & Schematics\DRE II Fmyload Updated 2-15\Pmyload Shell\Large Assemblies\

COMMAND LINE:

C:\Program Files\Al6GR\20.02\SolidE.exe -b=0 -o=1 -zw=2 C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematics\NKE II Fayl

TYPE OF OPERATION:

Meshing only surface defined by part 0 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Elements built (4,5,6,8 nd	oded) ;	9139 (3451,	1650,	612,	3418	5
Volume $(4,5,6,0 \mbox{ moded } 8):$	7,9297	15 (3.60,	4.85	. 4.	86,	86.70
Number of nodes: 11407							
Length ratios (avg) 5	.3,	3.0,	2.0,		1.2		
Length ratios (max) 99.	.5,	25.1,	3.3,		3.3		
Aspect ratio: unconstrains	ed (3.9,	3.7,	1.2,	1.1)	
Average aspect ratios:		1.3,	1.4,	1.1,	1.0)	
Total used memory: 47.3	1 MB						
Number of restarts: 0							
Elapsed time: 0 minutes 2	4 secos	da					

Part 9 < Base Bracket:1>

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	538

Solid Mesh Statistics

Mesh type	Mix of bricks, wedges, pyramids and tetrahedra
Watertight	Yes
Mesh has microholes	No
Total nodes	602
Volume	0.45604 in^3
Total elements	241

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	6	11	11	213
Volume %	0.16	0.9	2.47	96.47
Max. length ratio	10.5	4.5	1.7	3.2
Avg. length ratio	5.1	2.7	1.3	1.2
Avg. aspect ratio	1.3	1.3	1.1	1
Unconstrained aspect ratio	1.5	1.6	1.1	1.1

Log File

GENERATING SOLID MESH FOR ANOTHER PART

PROSRAM WILL USE THE FOLLOWING FILES:

Input: Chlocuments and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematice\MRE II Fayload Updated 2-15\Payload Shell\Large Assemblies' Output: Chlocuments and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematice\MRE II Fayload Updated 2-15\Payload Shell\Large Assemblies'

COMMAND LINE:

C:\Program Files\ALGOR\20.02\SolidK.exe -b=0 -o=1 -zw=2 C:\Documents and Settings\Raymond\My Documents\My Docu\Capatome\Drawings & Schematios\MRE II Fayl

TYPE OF OPERATION:

Meehing only surface defined by part 9 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Elements built (4,5,6,8 no	ded): 241 (6, 11, 11,	213)	
Volume (4,5,6,0 moded %):	0.456040 (0.16, 0.9	0, 2.47,	96.47)
Number of nodes: 602				
Length ratios (avg) 5.	3, 2.7,	1.3,	1.2	
Length ratios (max) 10.	5, 4.5,	1.7,	3.2	
Aspect ratio: unconstraine	d (1.5,	1.6, 1.1,	1.1)	
Average aspect ratios:	(1.3,	1.3, 1.1,	1.0)	
Yotal used memory: 12.37	MB			
Number of restarts: 0				
Elapsed time: 0 minutes 2	seconds			

Part 10 <Top Bracket:1>

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	278

Solid Mesh Statistics

2497 of 22503

Nesh type	Mix of bricks, wedges, pyramids and tetrahedra
Watertight	Yes
Mesh has microholes	No
Total nodes	355
Volume	0.227806 in^3
Total elements	378

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	178	88	39	73
Volume %	9.62	11.37	16.54	62.46
Max. length ratio	83.9	8.3	3.8	1.8
Avg. length ratio	6.7	3.2	1.8	1.2
Avg. aspect ratio	1.3	1.3	1.1	1
Unconstrained aspect ratio	3.6	1.7	1.2	1.1

Log File

GENERATING SOLID MESH FOR ANOTHER PART

PROGRAM WILL USE THE FOLLOWING FILES:

Imput: C:\Documents and Settings\Raymond\Wy Documents\Wy Docs\Capstome\Drawings & Schematics\NKE II Fayload Updated 2-15\Payload Shell\Large Assemblies' Output: C:\Documents and Settings\Raymond\Wy Documents\Wy Docs\Capstome\Drawings & Schematics\NKE II Fayload Updated 2-15\Payload Shell\Large Assemblies'

COMMAND LINE:

C1\Program Files/ALSGR/20.02\SolidE.exe -b=0 -o=1 -pw=2 C1\Documents and Settings\Reymond/My Documents\My DocuMcastone\Drawings & Schematics\MRE II Fay!

TYPE OF OPERATION:

Meshing only surface defined by part 10 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Klements built (4,5,6,0 noded): 370 (170, 00, 39, 73)
Volume (4,5,6,0 noded %): 0.227006 (9.62, 11.37, 16.54, 62.46)
Humber of nodes: 355
Length ratios (avg) 6.7, 3.2, 1.0, 1.2
Length ratios (max) 03.9, 0.3, 3.0, 1.0
Aspect ratios: (mocostrained (3.6, 1.7, 1.2, 1.1)
Average aspect ratios: (1.3, 1.3, 1.1, 1.0)
Total used memory: 11.30 MB
Humber of restarts: 0
Klapsed time: 0 minutes 1 seconds

Part 11 <Top Bracket:3>

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	278

Solid Mesh Statistics

Mesh type

Mix of bricks, wedges, pyramids and tetrahedra

22498 of 22503

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents

Watertight	Yes
Mesh has microholes	No
Total nodes	359
Volume	0.227806 in^3
Total elements	387

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	180	100	38	69
Volume %	9.89	14.76	16.2	59.2
Max. length ratio	52.9	12.9	3.8	1.8
Avg. length ratio	6.6	3.4	1.8	1.2
Avg. aspect ratio	1.3	1.3	1.1	1
Unconstrained aspect ratio	2.9	2	1.2	1.1

Log File

GENERATING SOLID MESS FOR ANOTHER PART

PROGRAM WILL USE THE FOLLOWING FILES:

Input: ChlDocuments and Settings/Raymond/My Documents/My Docs/Capatoms/Drawings & Schematics/NKE II Payload Updated 2-15/Payload Shell/Large Assemblies' Comput: ChlDocuments and Settings/Raymond/My Documents/My Docs/Capatoms/Drawings & Schematics/NKE II Payload Updated 2-15/Payload Shell/Large Assemblies'

COMMAND LINE:

C:\Program Files\ALGGB\20.02\SolidE.exe -b=0 -o=1 -zw=2 C:\Documents and Settings\Raymond\My Documents\My Docs\Capatone\Drawings & Schematics\NKE II Fayl

TYPE OF OPERATION:

Meshing only surface defined by part 11 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Elements buil	t (4,5,6,6	noded):	387 (180, 10	30, 38	A 69)	
Volume (4,5,6	,8 moded (1: 0.2270	106 (9.89,	14.76	i, 16.20,	59.20
Number of nod	les: 359						
Length ratios	(arrg)	6.6,	3.4,	1.0,	,	1.2	
Length ratios	(nax)	52.9,	12.9,	3.8,	,	1.0	
Aspect ratio:	unconstru	ined (2.9,	2.0,	1.2,	1.1)	
Average aspec	t zatios:	6	1.3,	1.3,	1.1,	1.0)	
Total used me	mory: 13	.39 MB					
Number of res	tarts: ()					
Elapsed time:	0 minutes	2 second	la l				

Part 12 <Top Bracket:4>

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	278

Solid Mesh Statistics

Nesh type	Mix of bricks, wedges, pyramids and tetrahedra
Watertight	Yes

2499 of 22503

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents.

Mesh has microholes	No
Total nodes	345
Volume	0.227733 in^3
Total elements	370

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	170	87	39	74
Volume %	8.91	11.31	17.59	62.23
Max. length ratio	82.3	13	3.3	2.2
Avg. length ratio	7.4	3.5	1.9	1.2
Avg. aspect ratio	1.3	1.3	1.1	1
Unconstrained aspect ratio	3.6	2	1.2	1.1

Log File

GENERATING SOLID MESS FOR ANOTHER PART

PROSERN WILL USE THE FOLLOWING FILES:

Imput: C:\Documents and Settings\Faymond\My Documents\My Docs\Capstome\Dimmings & Schwantics\MRE II Fmyload Updated 2-15\Fmyload shell\Large Assemblies' Output: C:\Documents and Settings\Faymond\My Documents\My Docs\Capstome\Dimmings & Schwantics\MRE II Fmyload Updated 2-15\Fmyload shell\Large Assemblies'

COMMAND LINE:

C:\Program Files\ALGGR\20.02\SolidK.exe -b=0 -o=1 -zw=2 C:\Documents and Settings\RaymondYMy Documents\My DocuMcaptoue\Drawings & Schematics\NRE II Fayl

TYPE OF OPERATION:

Meshing only surface defined by part 12 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Elements hullt (4,5,6,0 noded): 370 (170, 07, 39, 74) Volume (4,5,6,0 noded %): 0.227733 (0.91, 11.31, 17.59, 62.23) Humber of nodes: 345 length ratios (awg) 7.4, 3.5, 1.9, 1.2 length ratios (max) 02.3, 13.0, 3.3, 2.2 Aspect ratio: unconstrained (3.6, 2.0, 1.2, 1.1) Average aspect ratios: (1.2, 1.3, 1.1, 1.0) Yotal used memory: 11.25 MB Humber of restarts: 0 Elapsed time: 0 minutes 1 seconds

Part 13 <Top Bracket:5>

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	278

Solid Mesh Statistics

Mesh type	Mix of bricks, wedges, pyramids and tetrahedra
Watertight	Yes
Mesh has microholes	No

4/24/2008 4-15 DN

Total nodes	356
Volume	0.227797 in^3
Total elements	411

	Tetrahedra	Pyramids	Wedges	Bricks
Elements	205	97	37	72
Volume %	11.17	12.69	15.69	60.43
Max. length ratio	80.1	8.4	3.3	2.2
Avg. length ratio	6.3	3.5	1.9	1.3
Avg. aspect ratio	1.3	1.3	1.1	1
Unconstrained aspect ratio	3.5	1.7	1.2	1.1

Log File

GENERATING SOLID MESH FOR ANOTHER PART

PROGRAM WILL USE THE FOLLOWING FILES:

Imput: Ch\Documents and Settingh\Rwymond\Wy Documents\Wy Docs\Capstone\Drawings & Schematios\NKK II Fayload Updated 2-15\Payload Shell\Large Assemblies' Output: Ch\Documents and Settingh\Rwymond\Wy Documents\Wy Docs\Capstone\Drawings & Schematios\NKK II Fayload Updated 2-15\Payload Shell\Large Assemblies'

COMMAND LINE:

C:\Program Files\Al6GR\20.02\SolidE.exe -b=0 -o=1 -gw=2 C:\Documents and Settings\Raymond\My Documents\My Docs\Capstone\Drawings & Schematics\MKE II Fayl

TYPE OF OPERATION:

Meshing only surface defined by part 13 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Elements built (4,5,6,	8 noded);	411 (205, 9	7, 37, 7	2)	
Volume (4,5,6,0 moded	<pre>%): 0.227</pre>	797 (11.17,	12.69,	15.69	60.43]
Number of nodes: 356						
Length ratios (avg)	6.3,	3.5,	1.9	1.	э	
Length ratios (max)	00.1,	0.4,	3.3	2.	2	
Aspect ratio: unconst:	rained (3.5,	1.7,	1.2,	1.1)	
Average aspect ratios:		1.3,	1.3,	1.1,	1.0)	
Total used memory:	11.40 MB					
Number of restarts:	0					
Elapsed time: 0 minute	es 2 secco	da				

Part 14 <Top Frame:1>

Status: the part successfully meshed.

Surface Mesh Statistics

Mesh operation	Solid mesh
Final mesh size	0.129125 in
Elements created	8923
Solid Mesh Statistics	
Mesh type	Mix of bricks, wedges, pyramids and tetrahedra

Watertight	Yes
Mesh has microholes	No
Total nodes	10267

1040000-416-**7**0

Volume	7.305009 in^3			
Total elements	7051			
	Tetrahedra	Pyramids	Wedges	Bricks
Elements	2496	1268	187	3100
Volume %	3.85	4.86	2.53	88.76
Max. length ratio	65.4	71.2	3.4	3.1
Avg. length ratio	5.7	3.6	1.9	1.1
Avg. aspect ratio	1.3	1.3	1.1	1
Unconstrained aspect ratio	3.1	3.3	1.2	1.1

Log File

GENERATING SOLID MESH FOR ANOTHER PART

PROSEAN WILL USE THE FOLLOWING FILES:

Imput: C:\Documents and Settings\Raymond\My Documents\My Docs\Capstome\Drawings & Schematics\WKE II Fmyload Updated 2-15\Pmyload Shell\Large Assemblies' Output: C:\Documents and Settings\Raymond\My Documents\My Docs\Capstome\Drawings & Schematics\MRE II Fmyload Updated 2-15\Pmyload Shell\Large Assemblies\

COMMAND LINE:

C:\Program Files\Al60R\20.02\SolidE.exe -b=0 -o=1 -rw=2 C:\Documents and Settings\Raymond\My Documents\My Docu\Capatone\Drawings & Schematics\NKE II Fayl

TYPE OF OPERATION:

Meshing only surface defined by part 14 Generating bricks, wedges, pyramids and tetrahedra elements Automatically minimizing aspect ratio of solid elements

FINAL STATISTICS:

Elements built (4, 5, 6, 0 moded): 7051 (2496, 1260, 107, 2100) Volume (4,5,6,0 moded %): 7.305009 (3.05, 4.06, 2.53, 00.76) Number of nodes: 10267 Length ratios (avg) 5.7, 3.6, 1.9, 1.1 Length ratios (max) 65.4, 71.2, 3.4, 3.1 Aspect ratio: unconstrained (3.1, 3.3, 1.2, 1.1) Average aspect ratios: (1.3, 1.3, 1.1, 1.0) Total used memory: 46.53 MB Number of restarts: 0 Elapsed time: O minutes 11 seconds

Superview Presentation Images

Stress

22503 of 22503

2. Support Structure Stress Output

Summary

Model Information

Analysis Type - Static Stress with Linear Material Models Units - English (m) - (bf. in, a, dag F. dag T. V. ohn, A, in*Br) Model location - C/Documents and Settings/Raymond/My Documents/My Docs/Capstone/Deswings & Schematics/MRE II Payload Updated 2-15/Seraor & Component Support Structure/Support Structure.fem Design scenario description -

Analysis Parameters Information

Load Case Multipliers

Static Stress with Linear Material Models may have multiple load cases. This allows a model to be analyzed with multiple loads while solving the equations a single time. The following is a list of load case multipliers that were analyzed with this model.

Load Case	Pressure/Surface Forces	Acceleration/Gravity	Displaced Boundary	Thermal	Voltage
1	1	1	0	0	0

Gravity Information

The following lists the values used if acceleration or gravity was included in the analysis. The Acceleration/Gravity direction multiplier is multiplied by the Acceleration/Gravity load case multiplier.

Acceleration Due To Body Force = 586.4 in/1Å*

Acceleration/Gravity X Multiplier	Acceleration/Gravity Y Multiplier	Acceleration/Gravity Z Multiplier
5	10	5

Multiphysics Information

Default Nodal Temperature	0 Å%F
Source of Nodal Temperature	None
Time step from Heat Transfer Analysis	Last

Processor Information

Type of Solver	Sparse
Disable Calculation and Output of Strains	No
Calculate Reaction Forces	Yes
Invoke Banded Solver	Yes
Avoid Bandwidth Minimization	No
Stop After Stiffness Calculations	No
Displacement Data in Output File	No
Stress Data in Output File	Yes
Equation Numbers Data in Output File	No
Element Input Data in Output File	No
Nodal Input Data in Output File	No
Centrifugal Load Data in Output File	No

Part Information

Part ID	Part Name	Element Type	Material Name
1	L Beam For Support Structure:1	Brick	Aluminum 6061-T4; 6061-T451
2	L Beam For Support Structure:2	Brick	Aluminum 6061-T4; 6061-T451
3	L Beam For Support Structure:3	Brick	Aluminum 6061-T4; 6061-T451
4	L Beam For Support Structure:4	Brick	Aluminum 6061-T4; 6061-T451
5	Platform Tie-ins:1	Brick	Aluninum 5052-H32
6	Platform Tie-ins:2	Brick	Alunimm 5052-H32
2	Platform Tie-ins:3	Brick	Aluninum 5052-H32
8	Platform Tie-ins: 4	Brick	Alunimm 5052-H32
2	Sensor Platform:1	Brick	Aluminum Alloy 3003-H14
10	Platform Tie-ins:5	Brick	Aluninum 5052-H32
<u>11</u>	Platform Tie-ins: 6	Brick	Aluminum 5052-H32
12	Platform Tie-ins:7	Brick	Aluninum 5052-H32
13	Platform Tie-ins:8	Brick	Alunimm 5052-H32
14	Platform Tie-ins:9	Brick	Aluminum 5052-H32
15	Platform Tie-ins:10	Brick	Aluninum 5052-H32
16	Platform Tie-ins:11	Brick	Aluminum 5052-H32
17	Platform Tie-ins:12	Brick	Aluninum 5052-H32
18	Sensor Platform:2	Brick	Alunimm Alloy 3003-H14

4 of 11170

Element Properties used for:

- lement Properties used tor: L Beam For Support Structure:1 L Beam For Support Structure:2 L Beam For Support Structure:3 L Beam For Support Structure:4 Platform Tie-ins:1 Platform Tie-ins:3 Platform Tie-ins:3 Platform Tie-ins:6 Platform Tie-ins:6 Platform Tie-ins:7 Platform Tie-ins:9 Platform Tie-ins:9 Platform Tie-ins:10 Platform Tie-ins:11 Platform Tie-ins:12 Sensor Platform:2

Element Type	Brick
Compatibility	Not Enforced
Integration Order	2nd Order
Stress Free Reference Temperature	0 °F

Material Information

Aluminum 6061-T4; 6061-T451 -Brick

Material Model	Standard
Material Source	ALGOR Material Library
Material Source File	C/Program Files/ALGOR/20.02/matlibs/algornat.mlb
Date Last Updated	2004/10/28-16:02:00
Material Description	None
Mass Density	0.00025265 lbf%s*2/in/inÅ*
Modulus of Elasticity	9993200 lbf/inÅ ²
Poisson's Ratio	0.33
Shear Modulus of Elasticity	3771000 lbf/inÅ ²
Thermal Coefficient of Expansion	0.000013111 1/Å*F

Aluminum 5052-H32 -Brick

Material Model	Standard
Material Source	ALGOR Material Library
Material Source File	C1Program Files/ALGOR/20.02/matlibs/algornat.mlb
Date Last Updated	2004/10/28-16:02:00
Material Description	None
Mass Density	0.00025078 lbf%s^2/in/inÅ3
Modulus of Elasticity	10196000 lb0inÅ ²
Poisson's Ratio	0.33
Shear Modulus of Elasticity	3756500 lbf/inŲ
Thermal Coefficient of Expansion	0.000013222 1/ŰF

Aluminum Alloy 3003-H14 -Brick

Material Model	Standard
Material Source	ALGOR Material Library
Material Source File	CAProgram Files/ALGOR/20.02/matlibs/algornat.mlb
Date Last Updated	2004/09/30-16:00:00
Material Description	None
Mass Density	2.56211e-4 lbf*a*2/in/inÂ*
Modulus of Elasticity	10.0e6 Ib0'inÅ ²
Poisson's Ratio	.38
Shear Modulus of Elasticity	3.63e6 Ib0/inÅ2
Thermal Coefficient of Expansion	12.96-6 1/®F

5 of 11170

Processor Output

Processor Summary

ALGOR. (N) Static Stress with Linear Material Models Version 20.01.00.0024-WIM 26-APR-2007 Copyright (c) 2007, ALGOR, Inc. All rights reserved. **** Nemory Dynamically Allocated = 1047740 HB EATE: MARCH 19, 2008 TIME: 10:20 AM INFUT MODEL C:\Documents and Settings\Rsymond\Hf Documents\Hf Docs\Capstone\Drawings & Schewatics\MRE II Payload Updated 2-15\Sensor & Comp PROMEAN VERSION: 2001000004 alg.dll VERSION: 200001003 agrdd.ar.dll VERSION: 10000000 algcon2tg.dll VERSION: 2000000463 amgsolve.exe VERSION: 200000045 Structural 1**** CONTROL INFORMATION (NUMNP) = (NELTTP) = (LL) = (NP) = (NDYN) = (NDYN) = 163254 number of mode points number of element types number of load cases number of frequencies (HDYN) = (HDYN) = (HEN2B) = (HENBND) = (GRAN) = (HEN1) = analysis type code equations per block bandwidth minimization flag gravitational constant number of equations 3.86408+02 489762 **** PRINT OF HODAL DATA SUPPRESSED **** PRINT OF REALTION NUMBERS SUPPRESSED **** Hard disk file size information for processor: Available hard disk space on current drive = 79959.570 megabytes Gravity direction vector = 5.00008+00 1.00008+01 5.00008+00 1**** ELENENT LOAD MULTIPLIERS load case case A case B case C case D case B 1 1.0008+00 1.0008+00 0.0008+00 0.0008+00 0.0008+00 **** Invoking Famallel ECSLIB-EXT Sparse Solver ... **** Symbolic Assembling Using the Row-Rits Matrix Profile ... **** Assembled in One Block. **** Real Sparse Matrix Assembly ... 1**** STIFFNESS MATRIX PARAMETERS minimum non-zero diagonal element = 1.31668+05 maximum diagonal element = 6.02678+07 maximum/minimum = 5.19268+02 average diagonal element = 9.01158+05 the minimum is found at equation 54878: mode=18283 Ty the maximum is found at equation 463621: mode=154541 Tx Reaction Sums and Maxima for Load Case 1 Sum of applied forces N-Force T-Force I-Force N-Nument T-Homent 3-Homent 1.02688+01 2.05778+01 1.02688+01 0.00008+00 0.00008+00 0.00008+00 Sum of reactions E-Force T-Housent T-Housent 3-Housent -1.9908401 1.70048401 -9.43378400 0.00008400 0.00008400 0.0000840 Jum of residuals K-Force T-Housent T-Housent 3-Housent 1.97218-01 3.75718+01 0.36708-01 0.00008+00 0.00008+00 0.00008+00 Sum of unfixed direction residuals E-Force T-Force S-Force E-Moment T-Homent S-Moment -1.87218+01 3.75718+01 0.36708-01 0.00008+00 0.00008+00 0.00008+00
 Largest applied forces and moments
 Node
 Node
 Node
 Node

 Farcres
 T-Worke
 T-Worke
 T-Worket
 T-Worket
 T-Worket

 2.74008-04
 5.74001
 T-Worket
 T-Worket
 0
 0

 2.74008-04
 5.440018-04
 2.74008-04
 0.000084-00
 0.000084-00
 0.000084-00
 Largest nodal reactions Node Node Node Node N-Borce T-Rocce 3-Rocce T-Bonant T-Koment 3-Koment 1454541 157050 154541 0 0.00008400 0.00008400 0.00008400 -1.85238400 -4.22088400 -3.03708400 0.00008400 0.00008400 0.00008400 Largest nodal residuals Node Node

Node

Node

Node

Node

of 11170

file:///C:/Documents%20and%20Settings/Raymond/My%20Documents.

2-Momen	T-Moment 0	X-Moment 0	2-Force 154541	T-Force 153709	X-Force 154541
0.00008+0	0.00008+00	0.00008+00	-3.8370E+00	-4.2206E+00	-1.85238+00
			on residuals	fixed directi	Largest unf
				Wie die	Maria
Nod	Node	Node	NOGR	31.01.09	100.08
Nod 2-Monetal	Node T-Homent	Node X-Noment	3-Force	T-Force	X-Force
Slod 2-Monea	T-Moment 0	Node X-Moment O	3-Force 154541	T-Force 153709	X-Force 154541

1**** TEMPGRARY FILE STORAGE (MEGABYTES)

UNIT MC	١.,	7	1	3.767	
UNIT MC	١.,	0	1	5.605	
ONIT NO	λ.	- 9		0.000	
UNIT MC	١.,	10	1	0.000	
UNIT MC	١.,	11	1	0.001	
UNIT MC	١.,	12	1	3.737	
UNIT MC	١.,	13	i.	3.767	
UNIT MC	١.,	14	i.	0.000	
UNIT MC	١.,	15	1	0.000	
UNIT MC	١.,	17	1	0.000	
UNIT MC	ŝ.	51	ŝ.	19,771	
UNIT MC	i.	52	i.	549.967	
UNIT NO	١.,	54		1.969	
UNIT MC	٨.,	55	i.	51.373	
UNIT MC	١.,	56	÷.	102.745	
UNIT MC	١.,	50	1	3.737	
UNIT MC	i.	59	ŝ	0.000	
TOTAL			1	746.238	Megahytes

Processor Log

ALGOR (8) Static Stress with Linear Material Nodels Version 20.03.00.0024-WIM 26-APR-2007 Copyright (c) 2007, ALGOR, Inc. All rights reserved. Structural 143254 10 1 0 0 **** Liser stress analysis **** Memory Dynamically Allocated = 1047740 NB Options executed are: NCNEN DOTS STRAIN SPARSE SUPER SUPER SUPER SUPER REAC ENCR processing ... **** OFENING TEMPORARY FILES NUMBER = 0 DATE: MARCH 19, 2008 TIME: 10:20 AM IMPUT MCOGL: C:\Documents and Settings\Reymond\My Documents\My Docs\Capstone\Drawings & Schematics\MRE II Payload Updated 2-15\Sensor & Comp IMPUT MCOGL: C:\Documents and Settings\Reymond\My Documents\My Docs\Capstone\Drawings & Schematics\MRE II Payload Updated 2-15\Sensor & Comp FROMEWAY VERSION: 2001000004 alg.dll VERSION: 2000010034 agrdb ac.dll VERSION: 2000010034 algcomfig.dll VERSION: 2000010044 algcolve.exe VERSION: 200001043 ampcolve.exe VERSION: 200000043 ampcolve.exe VERSION: 200000043 409762 DORS **** BHD NOOAL DATA IMPUT **** BAGIN TYPE-0 data IMPUT PART 1 CONTAINING 9331 ELEMENTS 3000 (3.6.4) elements 0 (0.8) elements **** end TTPE-0 data NHUT **** BOOH TTPE-0 data NHUT PART 2 ContraINUM 231 ELEMENTS 2000 (04.6) elements 5000 (00.6) elements 4000 (40.6) elements 2000 (36.6) elements 0 (0.6) elements **** end TTPE-0 data INPUT **** BROIN TTPE-0 data INPUT PART 3 CONTAINING 0331 ELEMENTS

APPENDIX I: Vibration Analysis

1.	Centroid and Moment of Inertia of an Angle-shaped Support Member1	91
2.	Frequencies and Modes of the Support Structure	193
3.	Vibration Analysis of The Gondola for HASP	196
4.	NaturalFrequencies.m	201

APPENDIX J: Thermal Simulation

1.	Total Thermal System	Simulation	.205
----	----------------------	------------	------
APPENDIX K: Receiver Simulation

1.	Receiver	Simulation Code	25	1
----	----------	-----------------	----	---

1. Receiver Simulation Code

This code simulates what the receiver will see and how it will handle it.

%TIME SEQUENCE

%for longer simulation time we could do a for loop and save just the %heterodyned and downsampled data points T=4*10^-8;%simulation time dt=1/fsamp; %sampling time Npoints=round(T/dt);%data points in our simulation t=linspace(0,T,Npoints);%time sequence

%NOISE

Nf=10;%number of frequencies that we are looking up minf=55*10^9;%minimum f maxf=65*10^9;%max f range=maxf-minf; df=range/Nf; signal=zeros(1,Npoints);
nfft=Npoints;

%freq dependent noise fnoise=linspace(0,fsamp,Npoints);% frequency noise range fpeak=60*10^9%peak of noise Oxygen line gamma=2*10^10; fcurve=100*fpeak*gamma./(abs(fnoise.^2-fpeak^2) +gamma^2); noise_fft=fft(noise); noise_fft1=noise_fft.*fcurve; figure(22) semilogy(fnoise,real(noise_fft1),'r-')

noise=real(ifft(noise_fft1))+noise_CMB;

Ac=3;% initial amplitude signal n=7;% determines the power law dependency of the strength of the signal %as a function of frequency (test with different values)

Sig=0; if Sig==0 Ac=1; n=0; end

for i=1:Nf

%SIGNAL %sinusoidal signal at given frequency in the radiometer range f1=minf+df*(i-1);% in Hz, signal frequency omega1=2*pi*f1;% angular frequency rad/sec

A=Ac*Noise_Amp*(f1/minf)^n % amplitude of signal, smaller than noise signal1=A*sin(omega1*t);% sinusoidal signal at given frequency signal=signal1+signal;% signal plus noise Const=1/4/fsamp*2/R; Tsig(i)=A^2*Const/kb; A1(i)=A; end

```
data=noise;
nfft=Npoints;
[PP1,FF1]=psd(data,nfft,fsamp);
figure(1)
semilogy(FF1,sqrt(PP1*300),'r-')
xlabel('frequency (Hz)')
```

ylabel('Input (signal+noise from environment) (Volts)')

```
PP1T=PP1/sqrt(fsamp/2)*Const/kb*300;
figure(2)
semilogy(FF1,PP1T,'r-')
xlabel('frequency (Hz)')
ylabel('Input (signal+noise from environment)-Temperature (K) ')
```

```
for i=1:Nf
f1=minf+df*(i-1);
%spectrum of original data
nfft=Npoints;
```

%ANTENNA block 1 %3 inch horn antenna % we simulate the antenna as a linear gain % specifications from Mi-Wave: 30 db gain %55-65 GHz Gain_Antenna=30; %decibel data1=data*exp(Gain_Antenna/20);%conversion from power to amplitude % data after antenna gain

%LNA (Low Noise Amplifier) block 2 %we simulate the LNA as a linear gain + Noise Figure (added white noise) %specificatios from Mi-Wave Gain_LNA=25;% decibel NF=4.5;% decibel (internal noise) noise_factor=exp(4.5/20)*Noise_Amp*randn(1,Npoints); data2=data1*exp(Gain_LNA/20);%+noise_factor; % data after LNA

%BAND PASS FILTER block 3 %we use butterworth filter to create a band pass between %55 and 65 Giga Hertz N=5;%order of filter will be 2 times N w_Nyq=fsamp/2; % Nyquist frequency w_low=55*10^9/w_Nyq;% low frequency cutoff w_high=65*10^9/w_Nyq;% high frequency cutoff wn=[w_low w_high]; [b,a]=butter(N,wn); %filter coefficients data3=filter(b,a,data2); %filtered data

%CHECKING POWER SPECTRUM OF DATA %DEMODULATION (MIXER through reference frequency) %in this step we demodulate we signal (heterodyning) to a smaller frequency %through mixing the data with a sine wave that is given by a stable

%FILTERING after DEMODULATION %we use Bandpass to eliminate anything above 2GHz N=2;%order of filter will be 2 times N w_Nyq=fsamp/2; % Nyquist frequency w_low=100*10^6/w_Nyq;% low frequency cutoff 100 MegaHz w_high=2*10^9/w_Nyq;% high frequency cutoff 1 GigaHz wn=[w_low w_high]; [b,a]=butter(N,wn); %filter coefficients data6=filter(b,a,data5); %filtered data

%DETECTOR %square detector: ouptut in Volts (Amplitude) is linearly proportional to %the input in Power (Energy/time or Amplitude^2/time) %Millimiter Wave Product Model 950 A: Video Sensitivity 800 mV/mW V1=data6;

Power1=V1.^2; % in Watts (we need to normalize this) so the quantities are right PmW=10^-3; % Reference Power: 1 milliwatts dbm=10*log10(Power1/PmW); %conversion to dbm Vout_milli=800*Power1/PmW;% conversion to MilliVolts according to square law data7=sqrt(Vout_milli);

[P_final,F_final]=psd(data6,nfft,fsamp);

%we need to convert this first into Energy then into Temperature

i2=find(F_final<1.2*10^9 & F_final>150*10^6); i3=find(F_final<1.5*10^9 & F_final>500*10^6);

IF1(i)=IF;

```
Pmax=max(P final(i2));
kb1=kb;
if Sig==0
  ijh=find(FF1<1.2*10^9+IF & FF1>150*10^6+IF);
  Pmax=mean(P final(i2));
  A1(i)=sqrt(mean( PP1T(ijh) ) );
  Const=1:
  kb1=1;
end
%this is an attempt to convert to Tempature, more work needed
norm1=Pmax/(A1(i)<sup>2</sup>*Const);
P E=P final/norm1;
P T=P E/kb1;
P_T_max(i)=max(P_T(i2));
Psum(i)=sum(P final(i2))/sqrt(deltaf/2);% total power over the bandwidth
PsumT(i)=sum(P T(i2));%total temperature over bandwith
figure(10)
semilogy(F_final(i2)+IF,P_T(i2),'r-o')
ylabel('Temperature (K)')
xlabel('Frequency Hz')
title('Final output sweeping through frequencies with increased P proportional to f<sup>{</sup> n})
hold on
pause(0.01)
end
hold off
figure(11)
plot(Tsig(2:length(Tsig)),P_T_max(2:length(Tsig)),'o')
xlabel('Temperature of Input signal (K)')
ylabel('Temperature of Output signal (K)')
figure(12)
plot(IF1(2:length(IF1)),Psum(2:length(IF1)),'o')
xlabel('Frequency band-central frequency (Hz)')
ylabel('Total power (Watts)')
title('Power in different frequency bands, with bandwidth of 2 GHz')
figure(13)
semilogy(fnoise,fcurve)
```

figure(14) plot(IF1(2:length(IF1)),PsumT(2:length(IF1))*sqrt(deltaf/fsamp*2),'o') xlabel('Frequency band-central frequency (Hz)') ylabel('Total power (K)') title('Power in different frequency bands, with bandwidth of 2 GHz')

APPENDIX L: Technical Data

1.	High Altitude Wind Data from Meteorological Rockets258
2.	Lower Altitude Wind Data for White Sands, New Mexico from NOAA Profiler Network
3.	HASP Interface Manual Version 2/08/08263
4.	National Scientific Balloon Facility Recommendations for Gondola Design, April 1, 1986
5.	AN INSTRUMENT FOR INVESTIGATION OF THE COSMIC MICROWAVE BACKGROUND RADIATION AT INTERMEDIATE ANGULAR SCALES285

2. Lower Altitude Wind Data for White Sands, New Mexico from NOAA Profiler Network

This diagram shows the wind velocities for a twelve hour time period above White Sands, New Mexico on March 20, 2008. This data was averaged for twelve hours between the altitudes of 1224 meters and 15 kilometers.